A single stage torque converter consists of three elements — pump, stator and turbine. Pump and turbine are coupled by transmission fluid. Unlike a fluid coupling, however, a torque converter is able to multiply torque when there is a substantial difference between input and output rotational speed, thus providing the equivalent of a reduction gear. During its operation all these elements are subjected to centrifugal load, fluid pressure load and heat generated in transmission fluid. Overloading a converter can result in several failure modes, some of them potentially dangerous in nature: ballooning, blade deformation and defragmentation, overheating. In the current work a single stage torque converter, was modelled and analysed numerically for evaluating stress distribution and deformation. The engine operating speed at 2000 rpm was considered for analysis. For static analysis of torque converter components centrifugal load and fluid pressure load were considered. Analysis was carried out for six different speed ratios varying from zero to one. Variation of principal stresses (hoop stress and radial stress) and von-Mises stress has been discussed. Maximum stresses are found to be in pump at speed ratio of one and in turbine at speed ratio of zero. Maximum stresses are at shell core that is near to hub. Blade deformation in pump is maximum at coupling phase and in turbine it is maximum at stall condition. From these results it helps to predict the failure of torque converter components under different operating conditions.
Calculating the heat transfer rate of the engine is very difficult due to the complex geometry design of the engine and the periodic flow of air and fuel during engine operation for full cycles. Various theories hypothesize that about 25% of the energy contained in the fuel is converted into useful work and the remaining 75% is released into the environment by the engine. The main objective of the present work is to improve the heat transfer rate of existing constructions of the engine cylinder block by modifying its construction and also with new materials. To this end, two CAD models were created using CATIA software, then a transient thermal analysis with ANSYS at ambient temperature for the summer season of 45oC for the real one and the proposed internal combustion engine design was performed one after the other. Other to optimize the geometric parameters and improve the heat transfer rate. From the results of the transient thermal analysis, it was found that the proposed engine cylinder block design has better performance and heat transfer rates than the actual engine cylinder block design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.