A lot of research has been undertaken in the area of conventional machining to study the effect of process parameters, tool geometry, machining environment and so on on machinability. But only recently, the research community has started analysing the carbon footprint of manufacturing processes. But very few articles could be located that attempted simultaneous minimisation of specific cutting energy and back force over a wide domain of process and tool-geometric parameters. This article has experimentally studied the effect of variation in depth of cut, feed, nose radius and tool geometry on simultaneous minimisation of specific cutting energy and back force while turning AISI 1060 steel with uncoated carbide inserts under dry machining environment. Minimisation of specific cutting energy and back force as individual criterion leads to conflicting choice of machining parameters. A combined criterion based on specific cutting energy and back force has been defined and for the minimisation of the same, cutting tools with positive rake need to be used, with high feed and moderate depth of cut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.