This study investigates the effect of dissimilar metal welding of low nickel stainless steel (SS) and 304 SS employing tungsten inert gas (TIG) welding process by using three different filler materials (316L, 308L and 310 SS). Microstructural, mechanical properties and corrosion behavior in 3.5% NaCl solution was studied. The microstructural investigation revealed the formation of δ-ferrite and γ-austenite in the weld (welded by 316L and 308L filler). The Higher δ-ferrite content was found more in 316L weld zone. Whereas samples welded by 310 SS filler showed the columnar structure in the weld zone. Relatively wider heat affected zone (HAZ) was measured on Cr-Mn SS side as compared to 304 SS side. Impact fracture surface of all the welded samples exhibited dimple appearance. Corrosion studies showed better pitting corrosion resistance in 316L SS welded sample due to the beneficial effect of δ-ferrite and also the addition of molybdenum (Mo). Electrochemical impedance spectroscopy (EIS) revealed higher polarization resistance (R p) in 316L SS as compared to other fillers. Galvanic current density was found to be higher in Cr-Mn SS as compared to 304 SS when coupled with different welded samples.
Purpose The purpose of the study is to evaluate Cr-Mn ASS weld using different heat inputs for its microstructure, mechanical properties and electrochemical behavior. The microstructural examination used optical and scanning electron microscopy. It was observed that ferrite content decreases with increasing heat input. The length of dendrites, inter-dendritic space and volume of lathy ferrite increase with increasing heat input. The increasing heat input caused grain coarsening near the fusion boundary and produced wider heat-affected zone (HAZ). It also decreases hardness and tensile strength. This is attributed to formation of more δ ferrite in the weld. The electrochemical evaluation suggested that the δ ferrite helps in improving the pitting potential in 3.5 per cent NaCl solution saturated with CO2. Whereas in 0.5-M H2SO4 + 0.003-M NaF solution, higher passivation current density was observed because of dissolution of dferrite. The interphase corrosion resistance decreased with increasing heat input. Design/methodology/approach The Cr-Mn austenitic stainless steel or low-nickel ASS was procured in form of 3-mm sheets in rolled condition. The tungsten inert gas welding was performed at three different heat inputs (100 A, 120 A and 140 A), argon as shielding gas with a flow rate of 15 L/min. Different welded regions were observed using optical microscope and scanning electron microscope. Electrochemicals test were performed in solutions containing 3.5 per cent NaCl with saturated CO2 solution and 0.5 M sulfuric acid + 0.003 M NaF at a scan rate of 0.1667 mV/s at room temperature (30 °C ± 1 °C) using a potentiostat. Findings The test steel Cr-Mn ASS is suitable with the selected electrode (308 L) and it produces no defects. Vermicular ferrite and lathy ferrite form in welds of various heat inputs. The increase in heat input reduces the formation of lathy ferrite. The width of HAZ and un-mixed zone increases with increase in heat input. The weld zone of low heat input (LHI) has the highest hardness and tensile strength because of higher δ ferrite content and small grain size in the weld zone. The hardness at high heat input (HHI) is found to be lowest because of grain coarsening in the weld. With increase in δ ferrite, the pitting resistance increases. In 0.5-M sulfuric acid + 0.003-M NaF, the increase in ferrite content reduces the passivation current density. Interphase corrosion resistance increases with increase in δ ferrite content as higher per cent degree of sensitization was observed in LHI welds as compared to medium heat input and HHI welds. Originality/value This work focuses on welding of ASS by tungsten inert gas welding at different heat inputs. Welding is a critical process for joining metals in most of the fabrication industries and proper heat input is required for getting desired microstructure in the weld metal. This would highly affect the strength and corrosion behavior of the alloy. This paper would give an understanding of how the change in heat input by tungsten inert gas welding affects the microstructural and corrosion behavior in the weld metal.
Purpose Effect of grain size on degree of sensitization (DOS) was been evaluated in Nickel free steel. Manganese and nitrogen contained alloy is a Ni-free austenitic stainless steels (ASS) having type 202 grade. The main purpose of this investigation is to find the effect of recrystallization on the DOS of stainless steel after the thermo-mechanical processing (cold work and thermal aging). Design/methodology/approach In the present investigation, the deformation of 202 grade analyzed using X-ray diffraction (XRD) and microstructural testing. Optical microstructure of Ni-free ASS has been done for cold worked samples with thermally aged at 900°C_6 h. Double loop electrochemical potentiodynamic reactivation test used for findings of degree of sensitization. Findings Ni-free ASS appears to be deformed more rapidly due to its higher stacking fault energy which gave results in rapid transformation from strain induced martensite to austenite in form of recrystallized grains, i.e. it concluded that as cold work percentage increases more rapidly recrystallization occurs. XRD results also indicate that more fraction of martensite formed as percentage of CW increases but as thermal aging reverted those all martensite to austenite. So investigation gives the conclusion which suggests that with high deformation at higher temperature and duration gives very less DOS. Originality/value Various literatures available for 300 series steel related to the effect of cold work on mechanical properties and sensitization mechanism. However, no one has investigated the effect of recrystallization through thermomechanical processing on the sensitization of nickel-free steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.