We present an algorithm for graph based saliency computation that utilizes the underlying dense subgraphs in finding visually salient regions in an image. To compute the salient regions, the model first obtains a saliency map using random walks on a Markov chain. Next, k-dense subgraphs are detected to further enhance the salient regions in the image. Dense subgraphs convey more information about local graph structure than simple centrality measures. To generate the Markov chain, intensity and color features of an image in addition to region compactness is used. For evaluating the proposed model, we do extensive experiments on benchmark image data sets. The proposed method performs comparable to well-known algorithms in salient region detection.
The present article describes the preparation of efficient and stable anion exchange membranes (AEMs) from the inter-polymer of polyethylene and polystyrene-co-polydivinylbenzene.
In this study, the authors aim to colourise a greyscale image using a fully automated framework which retrieves similar images from a reference database and then transfers the colour from the most similar retrieved images to perform colourisation. Inspired by the recent success of deep learning techniques in extracting semantic information from images, they first use fc7 features from AlexNet to retrieve similar images from the reference database. Top-k retrieved images are considered for colour transfer to the target greyscale image, using various pixel level features. The images which result from the previous step are given a colour enhancement with Reinhard stain normalisation. They follow a pixel-wise colour saturation based averaging technique to impart colour at pixel level. The final image is rectified using joint bilateral filtering. The resulting coloured images have a realistic appearance, similar in quality to the original coloured images. The proposed method outperforms several previous colourisation techniques, yielding superior performance both quantitatively and qualitatively. The method also enhances low-contrast images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.