Changes in structural architecture via interlayer C–H⋯F interactions triggered by solvent molecules influence the dual (photon and phonon) emission mechanism of a two-dimensional cluster-assembled material, [Ag14(StBu)10(CF3COO)4(4,4′-azopyridine)2].
Due to the atomic precession and exotic photophysical properties, silver cluster assembled materials (CAMs) are explored as functional nanomaterials in recent times. Although a few numbers of thiolate protected silver...
Use of portable and affordable pulse light sources (light emitting diodes (LED) and laser diodes) for tissue illumination offers an opportunity to accelerate the clinical translation of photoacoustic imaging (PAI) technology. However, imaging depth in this case is limited because of low output (optical) power of these light sources. In this work, we developed a noninvasive technique for enhancing strength (amplitude) of photoacoustic (PA) signal. This is a photothermal-based technique in which a continuous wave (CW) optical beam, in addition to short-pulse ~ nsec laser beam, is employed to irradiate and, thus, raise the temperature of sample material selectively over a pre-specified region of interest (we call the process as pre-illumination). The increase in temperature, in turn enhances the PA-signal strength. Experiments were conducted in methylene blue, which is one of the commonly used contrast agents in laboratory research studies, to validate change in temperature and subsequent enhancement of PA-signal strength for the following cases: (1) concentration or optical absorption coefficient of sample, (2) optical power of CW-optical beam, and (3) time duration of pre-illumination. A theoretical hypothesis, being validated by numerical simulation, is presented. To validate the proposed technique for clinical and/or pre-clinical applications (diagnosis and treatments of cancer, pressure ulcers, and minimally invasive procedures including vascular access and fetal surgery), experiments were conducted in tissue-mimicking Agar phantom and ex-vivo animal tissue (chicken breast). Results demonstrate that pre-illumination significantly enhances PA-signal strength (up to ~70% (methylene blue), ~48% (Agar phantom), and ~40% (chicken tissue)). The proposed technique addresses one of the primary challenges in the clinical translation of LED-based PAI systems (more specifically, to obtain a detectable PA-signal from deep-seated tissue targets).
A new adaptive weighting method [delay-and-sum-to-delay-standard-deviation factor (DASDSF)] combined with minimum variance (MV) beamforming is introduced in photoacoustic imaging (PAI). Existing MV-based beamformers improve photoacoustic image quality in terms of achieving narrow main lobes and, thus, improving spatial resolution. But, the beamformers give a strong side-lobe signal strength that greatly degrades the reconstructed image contrast. As a feedback weighting factor, DASDSF addresses the persisting side-lobe issue present in MV-beamformed images, i.e., our proposed method is robust against reduction in noises as well as side lobes, and it outperforms MV and MV combined with coherence factor beamformers. Validation studies—being carried out both in numerical simulation and experiments employing a low-cost (16 elements) linear transducer array in a home-built PAI system—demonstrate an excellent performance of the proposed weighting approach in improving SNR, while reducing main-lobe width (i.e., FWHM) and side-lobe signal strength. The study demonstrates that the proposed algorithm holds promise for development of a cost-effective PAI system using a low-cost linear transducer (
∼
16
elements against
∼
128
generally used).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.