Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.
The application of antimicrobial peptides has emerged as an alternative therapeutic tool to encounter against multidrug resistance of different pathogenic organisms. α-Melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, is found to be efficient in eradicating infection of various kinds of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). However, the chemical stability and efficient delivery of these biopharmaceuticals (i.e., α-MSH) to bacterial cells with a significant antibacterial effect remains a key challenge. To address this issue, we have developed a chitosan-cholesterol polymer using a single-step, one-pot, and simple chemical conjugation technique, where α-MSH is loaded with a significantly high amount (37.7%), and the final product is obtained as chitosan-cholesterol α-MSH polymer–drug nanoconjugates. A staphylococcal growth inhibition experiment was performed using chitosan-cholesterol α-MSH and individual controls. α-MSH and chitosan-cholesterol both show bacterial growth inhibition by a magnitude of 50 and 79%, respectively. The killing efficiency of polymer–drug nanoconjugates was very drastic, and almost no bacterial colony was observed (∼100% inhibition) after overnight incubation. Phenotypic alternation was observed in the presence of α-MSH causing changes in the cell structure and shape, indicating stress on Staphylococcus aureus. As a further consequence, vigorous cell lysis with concomitant release of the cellular material in the nearby medium was observed after treatment of chitosan-cholesterol α-MSH nanoconjugates. This vigorous lysis of the cell structure is associated with extensive aggregation of the bacterial cells evident in scanning electron microscopy (SEM). The dose-response experiment was performed with various concentrations of chitosan-cholesterol α-MSH nanoconjugates to decipher the degree of the bactericidal effect. The concentration of α-MSH as low as 1 pM also shows significant inhibition of bacterial growth (∼40% growth inhibition) of Staphylococcus aureus. Despite playing an important role in inhibiting bacterial growth, our investigation on hemolytic assay shows that chitosan-cholesterol α-MSH is significantly nontoxic at a wide range of concentrations. In a nutshell, our analysis demonstrated novel antimicrobial activity of nanoparticle-conjugated α-MSH, which could be used as future therapeutics against multidrug-resistant Staphylococcus aureus and other types of bacterial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.