The reaction of a new hexadentate Schiff base hydrazide ligand (LH3) with rare earth(III) chloride salts in the presence of triethylamine as the base afforded two planar tetranuclear neutral complexes: [{(LH)2Dy4}(μ2-O)4](H2O)8·2CH3OH·8H2O (1) and [{(LH)2Ho4}(μ2-O)4](H2O)8·6CH3OH·4H2O (2). These neutral complexes possess a structure in which all of the lanthanide ions and the donor atoms of the ligand remain in a perfect plane. Each doubly deprotonated ligand holds two Ln(III) ions in its two distinct chelating coordination pockets to form [LH(Ln)2](4+) units. Two such units are connected by four [μ2-O](2-) ligands to form a planar tetranuclear assembly with an Ln(III)4 core that possesses a rhombus-shaped structure. Detailed static and dynamic magnetic analysis of 1 and 2 revealed single-molecule magnet (SMM) behavior for complex 1. A peculiar feature of the χM" versus temperature curve is that two peaks that are frequency-dependent are revealed, indicating the occurrence of two relaxation processes that lead to two energy barriers (16.8 and 54.2 K) and time constants (τ0 = 1.4 × 10(-6) s, τ0 = 7.2 × 10(-7) s). This was related to the presence of two distinct geometrical sites for Dy(III) in complex 1.
The sequential reaction of a multisite coordinating compartmental ligand [2-(2-hydroxy-3-(hydroxymethyl)-5-methylbenzylideneamino)-2-methylpropane-1,3-diol] (LH4 ) with appropriate lanthanide salts followed by the addition of [Mg(NO3 )2 ]⋅6 H2 O or [Zn(NO3 )2 ]⋅6 H2 O in a 4:1:2 stoichiometric ratio in the presence of triethylamine affords a series of isostructural heterometallic trinuclear complexes containing [Mg2 Ln](3+) (Ln=Dy, Gd, and Tb) and [Zn2 Ln](3+) (Ln=Dy, Gd, and Tb) cores. The formation of these complexes is demonstrated by X-ray crystallography as well as ESI-MS spectra. All complexes are isostructural possessing a linear trimetallic core with a central lanthanide ion. The comprehensive studies discussed involve the synthesis, structure, magnetism, and photophysical properties on this family of trinuclear [Mg2 Ln](3+) and [Zn2 Ln](3+) heterometallic complexes. [Mg2 Dy](3+) and [Zn2 Dy](3+) show slow relaxation of the magnetization below 12 K under zero applied direct current (dc) field, but without reaching a neat maximum, which is due to the overlapping with a faster quantum tunneling relaxation mediated through dipole-dipole and hyperfine interactions. Under a small applied dc field of 1000 Oe, the quantum tunneling is almost suppressed and temperature and frequency dependent peaks are observed, thus confirming the single-molecule magnet behavior of complexes [Mg2 Dy](3+) and [Zn2 Dy](3+) .
The reaction of the lanthanide(III) chloride salts [Gd(III), Tb(III), and Dy(III)] with a new chelating, flexible, and sterically unencumbered multisite coordinating compartmental Schiff-base ligand (E)-2-((6-(hydroxymethyl)pyridin-2-yl)methyleneamino)phenol (LH2) and pivalic acid (PivH) in the presence of triethylamine (Et3N) affords a series of tetranuclear Ln(III) coordination compounds, [Ln4(L)4(μ2-η(1)η(1)Piv)4]·xH2O·yCH3OH (1, Ln = Gd(III), x = 3, y = 6; 2, Ln = Tb(III), x = 6, y = 2; 3, Ln = Dy(III), x = 4, y = 6). X-ray diffraction studies reveal that the molecular structure contains a distorted cubane-like [Ln4(μ3-OR)4](+8) core, which is formed by the concerted coordination action of four dianionic L(2-) Schiff-base ligands. Each lanthanide ion is eight-coordinated (2N, 6O) to form a distorted-triangular dodecahedral geometry. Alternating current susceptibility measurements of complex 3 reveal frequency- and temperature-dependent two-step out-of-phase signals under zero direct current (dc) field, which is characteristic of single-molecule magnet behavior. Analysis of the dynamic magnetic data under an applied dc field of 1000 Oe to fully or partly suppress the quantum tunneling of magnetization relaxation process affords the anisotropic barriers and pre-exponential factors: Δ/kB = 73(2) K, τ0 = 4.4 × 10(-8) s; Δ/kB = 47.2(9) K, τ0 = 5.0 × 10(-7) s for the slow and fast relaxations, respectively.
A series of dinuclear lanthanide complexes, [Dy2(LH)2(µ2‐Piv‐κ2O,O′)2(NO3‐κ2O,O′)2] (1), [Tb2(LH)2(µ2‐Piv‐κ2O,O′)2(NO3‐κ2O,O′)2] (2), [Gd2(LH)2(µ2‐Piv‐κ2O,O′)2(NO3‐κ2O,O′)2] (3), and [Ho2(LH)2(µ2‐Piv‐κ2O,O′)2(NO3‐κ2O,O′)2] (4) have been synthesized by the reaction of Ln(NO3)3·nH2O with the multidentate hydrazone‐based Schiff‐base ligand, N′‐(2‐hydroxy‐3‐methoxybenzylidene)acetohydrazide (LH2) in the presence of pivalic acid. X‐ray crystallography data reveals that 1–4 are isostructural, neutral, and contain two mono‐deprotonated ligands, two pivalates, and two chelated nitrates. Within the dinuclear assembly, the two lanthanides are bridged by two phenolate and two pivalate oxygens. Each of the two lanthanide ions is nine‐coordinated and possesses a distorted monocapped square‐antiprism geometry. Detailed magnetochemical analysis revealed the presence of weak antiferromagnetic coupling at low temperature for all complexes. The DyIII analogue displayed SMM behavior in the absence of a dc field with two relaxation domains in which the thermally activated domain exhibits an energy barrier of 40 K and relaxation time of 6.5 × 10–5 s.
Four dinuclear lanthanide complexes [Gd2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (1), [Tb2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (2), [Dy2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (3) and [Eu2 (H2L)2 (µ-piv)2 (piv)2]·2CHCl3 (4) were synthesized by the reaction of appropriate Ln(III) chloride salts and a multidentate ligand, 2,2'-(2-hydroxy-3-methoxy-5-methylbenzylazanediyl)diethanol (H3L) in the presence of pivalic acid. 1-4 are neutral and are held by two monoanionic, [H2L](-) ligands. The two lanthanide ions are doubly bridged to each other via two phenolate oxygen atoms. Both the lanthanide ions are nine coordinated and possess a distorted capped square antiprism geometry. Photophysical studies reveal that Tb(3+) (2) and Dy(3+) (3) complexes display strong ligand-sensitized lanthanide-characteristic emission. The Tb(3+) complex (2) shows a very high overall quantum yield of 76.2% with a lifetime of 1.752 ms. Magnetic studies reveal single-molecule magnet behavior for 3 which shows in its ac susceptibility studies a two-step slow relaxation yielding two effective relaxation energy barriers of ΔE = 8.96 K and 35.51 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.