Background and Purpose: Klebsiella pneumoniae and Klebsiella oxytoca are the two most common pathogens causing nosocomial infections in humans and are of great concern for developing multidrug resistance. In the present study, K. pneumoniae and K. oxytoca from clinical samples were evaluated for their antibiotic sensitivity patterns against commonly used antibiotics and production of extended-spectrum beta-lactamase (ESBL). Ampicillin, Amoxicillin, Ceftriaxone, Ciprofloxacin, Gentamicin, Nalidixic acid, Tetracycline was 100%, 90%, 45%, 40%, 45%, 25%, 50%, 35% respectively. Multidrug resistance was found more common in K. pneumoniae (56%) than in K. oxytoca (50%). Prevalence rate of ESBL producing Klebsiella was found 45% among which K. pneumoniae (50%) were found more prominent than K. oxytoca (25%). All the ESBL producing Klebsiella isolates were found to be multidrug resistant, showing 100% resistance to Ampicillin, Amoxicillin, Ceftriaxone and Ciprofloxacin.
Materials and Methods:
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus through targeting six viral proteins. The selected proteins were retrieved from viralzone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain strain K12. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus through targeting six viral proteins. The selected proteins were retrieved from viralzone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain strain K12. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.
This research work was designed to attempt and propose the first report on production and biochemical characterization of fermented tea flower petal decoction or simply tea petal wine. The tea petal decoction and brewer’s yeast or Saccharomyces cerevisiae were co-cultured for fermentation. Antioxidant activity and chromatographic separation of potential candidates were assessed. Primary investigations for qualitative characters on this fermented broth revealed the presence of steroids, tannin, flavonoids, phenol, cardiac glycosides, coumarin, caffeine etc. Our manufactured fermented broth showed high free radical scavenging activity after 2 months of aging. High DPPH scavenging activities were also observed in solvent fractions of acetone, ethanol and methanol. The antioxidant activity, alcohol percentage and other qualities were seen to be gradually increased during aging. Gas chromatography-mass spectrometry analysis revealed the presence of 44 compounds including many potential antioxidant molecules and other bioactive agents. Hopefully, presence of alcohol with medicinally active compounds and antioxidant activity will make it as acceptable as a good wine and tea flower as economically functional.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.