Segmentation of suspicious regions (SRs) of a thermal breast image (TBI) is a very significant and challenging problem for identification of breast cancer. Therefore, in this work, we have proposed an active contour model for the segmentation of the SRs in a TBI. The proposed segmentation method combines three significant steps. First, a novel method, called smaller-peaks corresponding to the high-intensity-pixels and the centroid-knowledge of SRs (SCH-CS), is proposed to approximately locate the SRs, whose contours are later used as the initial evolving curves of the level set method (LSM). Second, a new energy functional, called different local priorities embedded (DLPE), is proposed regarding the level set function. DLPE is then minimized using the interleaved level set evolution to segment the potential SRs in a TBI more accurately. Finally, a new stopping criterion is incorporated into the proposed LSM. The proposed LSM not only increases the segmentation speed but also ameliorates the segmentation accuracy. Performance of our SR segmentation method was evaluated on two TBI databases, namely, DMR-IR and DBT-TU-JU and the average segmentation accuracies obtained on these databases are 72.18% and 71.26% respectively, which are better than other state-of-the-art methods. Beside this, a novel framework to analyze TBIs is proposed for differentiating abnormal and normal breasts on the basis of the segmented SRs. We have also shown experimentally that investigating only the SRs instead of the whole breast is more effective in differentiating abnormal and normal breasts.
This paper presents a novel facial sketch image or face-sketch recognition approach based on facial feature extraction. To recognize a face-sketch, we have concentrated on a set of geometric face features like eyes, nose, eyebrows, lips, etc and their length and width ratio because it is difficult to match photos and sketches because they belong to two different modalities. In this system, first the facial features/components from training images are extracted, then ratios of length, width, and area etc. are calculated and those are stored as feature vectors for individual images. After that the mean feature vectors are computed and subtracted from each feature vector for centering of the feature vectors. In the next phase, feature vector for the incoming probe face-sketch is also computed in similar fashion. Here, K-NN classifier is used to recognize probe facesketch. It is experimentally verified that the proposed method is robust against faces are in a frontal pose, with normal lighting and neutral expression and have no occlusions. The experiment has been conducted with 80 male and female face images from different face databases. It has useful applications for both law enforcement and digital entertainment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.