CONSPECTUS:The promising features of fluorescence spectroscopy have inspired a quest for fluorescent probes for analysis and monitoring of molecular interactions in biochemical, medical, and environmental sciences. To overcome the competitive supramolecular interactions in aqueous media encountered with conventional molecular-recognitionbased probes, the use of reaction-based probes that involve making or breaking of covalent bonds has emerged as a complementary sensing strategy to realize higher selectivity and sensitivity with larger spectroscopic changes. In spite of the enormous efforts, the development of reaction-based fluorescent probes meets with certain challenges in terms of their practical applications, demanding "intelligent design" of probes with an appropriate fluorophore attached to an efficient reactive moiety at the right place. This Account summarizes the results of our efforts made in the development and fine-tuning of reaction-based fluorescent probes toward those goals, classified by the type of analyte (anions, metal cations, and biomolecules) with notes on the challenges and achievements. The reaction-based approach was demonstrated to be powerful for the selective sensing of anions (cyanide and (amino)carboxylates) for the first time, and later it was extended to develop two-photon probes for bisulfite and fluoride ions. The reaction-based approach also enabled selective sensing of noble metal ions such as silver, gold, and palladium along with toxic (methyl)mercury species and paramagnetic copper ions. Furthermore, microscopic imaging and monitoring of biologically relevant species with reaction-based two-photon probes were explored for hydrogen sulfide, hypochlorous acid, formaldehyde, monoamine oxidase enzyme, and ATP.
A fluorescent probe that enables ratiometric imaging of endogenous hypochlorous acid (HOCl) in cells and tissues by two-photon microscopy is developed based on a red-emitting acetyl-benzocoumarin (AcBC) dye. An oxathiolane group in the probe reacts with HOCl to generate the AcBC dye, which involves a ratiometric fluorescence change only toward HOCl along with high sensitivity.
Long-term dynamic tracking of cells with theranostics properties remains challenging due to difficulty in preparing and delivering drugs by the probes. Herein, we developed a highly fluorescent one- and two-photon...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.