Transplantation of mesenchymal stem cells (MSCs), which possess self-renewing properties and multipotency, into a periodontal defect is thought to be a useful option for periodontal tissue regeneration. However, developing more reliable and predictable implantation techniques is still needed. Recently, we generated clumps of an MSC/extracellular matrix (ECM) complex (C-MSC), which consisted of cells and self-produced ECM. C-MSCs can regulate their cellular functions in vitro and can be grafted into a defect site, without any artificial scaffold, to induce bone regeneration. Accordingly, this study aimed to evaluate the effect of C-MSC transplantation on periodontal tissue regeneration in beagle dogs. Seven beagle dogs were employed to generate a premolar class III furcation defect model. MSCs isolated from dog ilium were seeded at a density of 7.0 × 10 cells/well into 24-well plates and cultured in growth medium supplemented with 50 µg/mL ascorbic acid for 4 d. To obtain C-MSCs, confluent cells were scratched using a micropipette tip and were then torn off as a cellular sheet. The sheet was rolled up to make round clumps of cells. C-MSCs were maintained in growth medium or osteoinductive medium (OIM) for 5 or 10 d. The biological properties of C-MSCs were evaluated in vitro, and their periodontal tissue regenerative activity was tested by using a dog class III furcation defect model. Immunofluorescence analysis revealed that type I collagen fabricated the form of C-MSCs. OIM markedly elevated calcium deposition in C-MSCs at day 10, suggesting its osteogenic differentiation capacity. Both C-MSCs and C-MSCs cultured with OIM transplantation without an artificial scaffold into the dog furcation defect induced periodontal tissue regeneration successfully compared with no graft, whereas osteogenic-differentiated C-MSCs led to rapid alveolar bone regeneration. These findings suggested that the use of C-MSCs refined by self-produced ECM may represent a novel predictable periodontal tissue regenerative therapy.
BackgroundThree-dimensional cultured clumps of a mesenchymal stem cell (MSC)/extracellular matrix (ECM) complex (C-MSC) consists of cells and self-produced ECM. C-MSC can regulate the cellular function in vitro and induce successful bone regeneration using ECM as a cell scaffold. Potentiating the immunomodulatory capacity of C-MSCs, which can ameliorate the allo-specific immune response, may be helpful in developing beneficial “off-the-shelf” cell therapy for tissue regeneration. It is well reported that interferon (IFN)-γ stimulates the immunosuppressive properties of MSC via upregulation of the immunomodulatory enzyme IDO. Therefore, the aim of this study was to investigate the effect of IFN-γ on the immunomodulatory capacity of C-MSC in vitro and to test the bone regenerative activity of C-MSC or IFN-γ-pretreated C-MSC (C-MSCγ) xenografts in a mice calvarial defect model.MethodsHuman bone marrow-derived MSCs were seeded at a density of 2.0 × 105 cells/well into 24-well plates and cultured with growth medium supplemented with 50 μg/mL L-ascorbic acid for 4 days. To obtain C-MSC, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The cellular sheet was rolled to make a round clump of cells. C-MSC was stimulated with IFN-γ and IDO expression, immunosuppressive capacity, and immunophenotype were evaluated in vitro. Moreover, C-MSC or C-MSCγ was xenotransplanted into immunocompetent or immunodeficient mice calvarial defect models without artificial scaffold, respectively.ResultsIFN-γ stimulated IDO expression in C-MSC. C-MSCγ, but not C-MSC, attenuated CD3/CD28-induced T cell proliferation and its suppressive effect was reversed by an IDO inhibitor. C-MSCγ showed upregulation of HLA-DR expression, but its co-stimulatory molecule, CD86, was not detected. Xenotransplantation of C-MSCγ into immunocompetent mice calvarial defect induced bone regeneration, whereas C-MSC xenograft failed and induced T cell infiltration in the grafted area. On the other hand, both C-MSC and C-MSCγ xenotransplantation into immunodeficient mice caused bone regeneration.ConclusionsXenotransplantation of C-MSCγ, which exerts immunomodulatory properties via the upregulation of IDO activity in vitro, may attenuate xenoreactive host immune response, and thereby induce bone regeneration in mice. Accordingly, C-MSCγ may constitute a promising novel allograft cell therapy for bone regeneration.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-017-0550-1) contains supplementary material, which is available to authorized users.
BackgroundThree-dimensional (3D) cultured clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. C-MSCs can regulate cellular functions in vitro and can be grafted into a defect site without an artificial scaffold to induce bone regeneration. Long-term cryopreservation of C-MSCs, which can enable them to serve as a ready-to-use cell preparation, may be helpful in developing beneficial cell therapy for bone regeneration. Therefore, the aim of this study was to investigate the effect of cryopreservation on C-MSCs.MethodsMSCs isolated from rat femurs were cultured in growth medium supplemented with ascorbic acid. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The sheet was rolled to make a round clumps of cells. The C-MSCs were cryopreserved in cryomedium including 10% dimethyl sulfoxide.ResultsCryopreserved C-MSCs retained their 3D structure and did not exhibit a decrease in cell viability. In addition, stem cell marker expression levels and the osteogenic differentiation properties of C-MSCs were not reduced by cryopreservation. However, C-MSCs pretreated with collagenase before cryopreservation showed a lower level of type I collagen and could not retain their 3D structure, and their rates of cell death increased during cryopreservation. Both C-MSC and cryopreserved C-MSC transplantation into rat calvarial defects induced successful bone regeneration.ConclusionThese data indicate that cryopreservation does not reduce the biological properties of C-MSCs because of its abundant type I collagen. More specifically, cryopreserved C-MSCs could be applicable for novel bone regenerative therapies.
Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.
BackgroundThree-dimensional (3D) floating culture clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. Previous studies have demonstrated that C-MSCs can be transplanted into bony lesions without an artificial scaffold to induce bone regeneration. Moreover, osteoinductive medium (OIM)-treated C-MSCs (OIM-C-MSCs) have shown rapid and increased new bone formation in vivo. To apply OIM-C-MSCs for novel bone regenerative cell therapy, their cellular properties at the molecular level must be elucidated. The transcriptional co-activators yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have been recognized as key players in the mechanotransduction cascade, controlling cell lineage commitment in MSCs. It is plausible that 3D C-MSCs/OIM-C-MSCs cultured in floating conditions could provide distinct microenvironments compared to conventional 2D culture systems and thereby induce unique mechanotransduction cascades. Therefore, this study investigated the YAP/TAZ activity in 3D-cultured C-MSCs/OIM-C-MSCs in floating conditions.MethodsHuman bone marrow-derived MSCs were cultured in growth medium supplemented with ascorbic acid. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The sheet was rolled to make round clumps of cells. Then, YAP/TAZ activity, filamentous actin (F-actin) integrity, collagen type I (COL1) production, and the differentiation potency in 3D floating culture C-MSCs/OIM-C-MSCs were analyzed.ResultsC-MSCs cultured in floating conditions lost their actin cytoskeleton to downregulate YAP/TAZ activity, which directed cells to undergo adipogenesis/chondrogenesis. OIM treatment induced abundant COL1 deposition, which facilitated Intβ1-dependent actin fiber formation and YAP/TAZ activity to elevate the expression levels of osteogenic master transcriptional factor runt-related transcription factor 2 (RUNX2) mRNA in C-MSCs. Importantly, elevation of YAP/TAZ activity via OIM was associated with COL1 deposition and F-actin integrity, suggesting a positive feedback loop in OIM-C-MSCs.ConclusionThese findings suggest that OIM-C-MSCs, which form a unique microenvironment that maintains high YAP/TAZ activity, can serve as better candidates for bone regenerative cell therapy than C-MSCs.Electronic supplementary materialThe online version of this article (10.1186/s13287-018-1085-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.