Two major stages of seed development are dormancy and germination which finally promotes the growth of a plant. Some internal and external factors such as hormonal, genetic, chromatin development and environmental factors which maintain the seed dormancy with passing time and other suitable factors, these dormancy promoters are gradually decreased causing release of dormancy and promoting germination by the mechanisms of ROS in plant signalling, cell elongation and reverse mobilization. But dormancy has some benefits in protecting the seed from extreme condition even after natural disaster as well as serving as food for predators in order to maintain balance of nature. So, dormancy can be inhibited by some phytochemical components like terpenoids, polyphenoliic compounds, flavonoids, alkaloids and glycosides by the mechanism of inhibiting water uptake system III and II, surface sterilization, reverse mobilization, cell elongation etc
Nonylphenol, an endocrine disrupter, is widely released to the aquatic environment, which is accumulative and extremely toxic to aquatic organisms. Here, we report a simple and cost-effective large-scale green synthesis of water-soluble highly fluorescent carbon quantum dots (CQDs) from marine biowaste (offshore washed algae) which gets quenched strongly in the presence of nonylphenol. These CQDs were around 20-40 nm in size and exhibit fluorescence constantly at 360 nm. The XRD profile depicted the interlayer spacing in the particle as 0.284 nm with a humped peak around 14 degrees showing the amorphous nature of the CQDs. FTIR spectra showed the stretching vibration of the hydroxyl groups (OH), asymmetric and symmetric stretching vibrations of the carboxylate anions (COO-). The fluorescence quantum yield of the CQDs is up to 68% and nonyl phenol detection limit is less than 0.1 µM. Furthermore, the CQDs were found to be stable at a wide pH range which makes it a suitable nonylphenol sensor for a variety of environmental samples. We functionalized these CQDs on an agarose gel matrix to develop a convenient sensor for the rapid detection of nonylphenol.
The review article serves as a mini directory of medicinal plants (662 medicinal plants have been identified) that have been investigated for antiviral property between 2015 and 2019. Data have been extracted from Scopus using specific keywords followed by manual sorting to avoid any duplication. Critical analyses of handpicked data have been presented. Mapping of medicinal plants, followed by critical analysis on the families and plant parts investigated in the said tenure, and its correlation with the participating countries and virus types have been critically analyzed. Interceptive role of phytochemicals in impeding viral replication has also been taken note of. Emphasis on India's exploration of various medicinal plants has also been given. Also presents a tutelage, which is likely to revive the interest in natural products for search of potential antivirals. This review is expected to serve as a rich data bank and as a guiding principle for researchers who are planning to explore medicinal plants in search for potential antiviral. It is time that researchers need to revisit their countries' own history of traditional medicine to predict something worthful in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.