Bacterial invasion of human mucosal cells is considered to be a primary event in the pathogenesis of a gonococcal infection. Here we report that cell surface heparan sulfate proteoglycans may play a role in the establishment of an infection, by functioning as receptors for the invasion‐promoting gonococcal opacity protein adhesin. Chemical modification and enzymatic removal of proteoglycan receptors from cultured epithelial cells abolished opacity protein‐associated gonococcal invasion, and mutant cell lines defective in proteoglycan synthesis were poor substrates for gonococcal attachment. The addition of purified receptor and receptor analogues totally blocked gonococcal entry into the cells. Heparin‐affinity chromatography and receptor binding assays using recombinant bacteria producing defined opacity proteins and reconstituted receptor or purified receptor fragments as probes, identified one particular member of the opacity protein family (MS11‐Opa30) as the primary ligand for this novel class of receptors for bacteria. Heparan sulfate proteoglycans with gonococcal binding activity were purified from various cell types derived from target tissues of gonococcal infection, including ME‐180 endocervical cells and primary cultures of human corneal epithelium. The physico‐chemical properties of the receptor indicate that it may belong to the syndecan proteoglycan family.
Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent markergene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed-omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.