Emotion recognition using EEG has been widely studied to address the challenges associated with affective computing. Using manual feature extraction methods on EEG signals results in sub-optimal performance by the learning models. With the advancements in deep learning as a tool for automated feature engineering, in this work, a hybrid of manual and automatic feature extraction methods has been proposed. The asymmetry in different brain regions is captured in a 2D vector, termed the AsMap, from the differential entropy features of EEG signals. These AsMaps are then used to extract features automatically using a convolutional neural network model. The proposed feature extraction method has been compared with differential entropy and other feature extraction methods such as relative asymmetry, differential asymmetry and differential caudality. Experiments are conducted using the SJTU emotion EEG dataset and the DEAP dataset on different classification problems based on the number of classes. Results obtained indicate that the proposed method of feature extraction results in higher classification accuracy, outperforming the other feature extraction methods. The highest classification accuracy of 97.10% is achieved on a three-class classification problem using the SJTU emotion EEG dataset. Further, this work has also assessed the impact of window size on classification accuracy.
Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which may lead to wrong interpretation in the brain–computer interface (BCI) system as well as in various medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting the information contained in the EEG. A novel multi-stage EEG denoising method is proposed for the first time in which wavelet packet decomposition (WPD) is combined with a modified non-local means (NLM) algorithm. At first, the artifact EEG signal is identified through a pre-trained classifier. Next, the identified EEG signal is decomposed into wavelet coefficients and corrected through a modified NLM filter. Finally, the artifact-free EEG is reconstructed from corrected wavelet coefficients through inverse WPD. To optimize the filter parameters, two meta-heuristic algorithms are used in this paper for the first time. The proposed system is first validated on simulated EEG data and then tested on real EEG data. The proposed approach achieved average mutual information (MI) as 2.9684 ± 0.7045 on real EEG data. The result reveals that the proposed system outperforms recently developed denoising techniques with higher average MI, which indicates that the proposed approach is better in terms of quality of reconstruction and is fully automatic.
This study proposes a novel combination of independent component analysis (ICA) in conjunction with support vector machine (SVM) and denoising autoencoder (DA), for the first time, for removal of eyeblink artefacts from the corrupted electroencephalography (EEG). At first the eyeblink corrupted EEG signals are decomposed into independent components (ICs) using ICA, the corrupted-ICs are then identified using SVM as a classifier. From the corrupted-ICs, the artefacted segment is identified with a second SVM classifier and corrected by the pre-trained DA. Finally, inverse-ICA operation is applied on the remaining ICs and the corrected ICs to obtain the artefact-free EEG signal. The proposed methodology modifies only the portion corrupted with artefacts, and does not alter the uncorrupted part, thereby preserving the neural information in the original EEG. The proposed methodology was implemented to remove eyeblinks from the EEG data collected from the publicly available EEGLab data set. The results reveal that the proposed methodology is superior to the other recently reported methods in terms of the mutual information and average correlation coefficient. Further, the proposed method is automatic and does not require any intervention of the operator, whereas the other methods require intervention of the user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.