The main purpose of scene text recognition is to detect texts in a given image. The problem of text detection and recognition in such images has gained great attention in recent years due to rising demand of several applications like visual based applications, multimedia and content-based retrieval. Due to low accuracies of existing scene text detection methods, an improved pipeline is developed for text localizing task. First, candidate text regions are generated using Maximally Stable Extremal Region and Stroke Width Transform methods that capture true positives along with many false positives. A One Class Classifier is trained to label the candidate regions obtained, as text or non-text, which in this case is suitable as non-text class cannot be adequately represented to train a binary classifier. The one class classifier is trained with some popular feature descriptors like Histogram of Oriented Gradients, Grey Level Co-Occurrence Matrix, Discrete Cosine Transform and Gabor filter. Experimental results show high recall for text containing regions and reducing false positives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.