The aim of this study was to analyze the tensile strength of two different resin cements used in passive cementation technique for implant-supported prosthesis. Ninety-six plastic cylinders were waxed in standardized forms, cast in commercially pure titanium, nickel-chromium and nickel-chromium-titanium alloys. Specimens were cemented on titanium cylinders using self-adhesive resin cement or conventional dual-cured resin cement. Specimens were divided in 12 groups (n=8) in accordance to metal, cement and ageing process. Specimens were immersed in distilled water at 37 °C for 24 h and half of them was thermocycled for 5,000 cycles. Specimens were submitted to bond strength test in a universal test machine EMIC-DL2000 at 5 mm/min speed. Statistical analysis evidenced higher tensile strength for self-adhesive resin cement than conventional dual-cured resin cement, whatever the used metal. Self-adhesive resin cement presented higher tensile strength compared to conventional dual-cured resin cement. In conclusion, metal type and ageing process did not influence the tensile strength results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.