α-Synuclein (aSyn), β-Synuclein (bSyn), and γ-Synuclein (gSyn) are members of a conserved family of chaperone-like proteins that are highly expressed in vertebrate neuronal tissues. Of the three synucleins, only aSyn has been strongly implicated in neurodegenerative disorders such as Parkinson's disease, Dementia with Lewy Bodies, and Multiple System Atrophy. In studying normal aSyn function, data indicate that aSyn stimulates the activity of the catalytic subunit of an abundantly expressed dephosphorylating enzyme, PP2Ac in vitro and in vivo. Prior data show that aSyn aggregation in human brain reduces PP2Ac activity in regions with Lewy body pathology, where soluble aSyn has become insoluble. However, because all three synucleins have considerable homology in the amino acid sequences, experiments were designed to test if all can modulate PP2Ac activity. Using recombinant synucleins and recombinant PP2Ac protein, activity was assessed by malachite green colorimetric assay. Data revealed that all three recombinant synucleins stimulated PP2Ac activity in cell-free assays, raising the possibility that the conserved homology between synucleins may endow all three homologs with the ability to bind to and activate the PP2Ac. Co-immunoprecipitation data, however, suggest that PP2Ac modulation likely occurs through endogenous interactions between aSyn and PP2Ac in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.