COVID-19, regarded as the deadliest virus of the 21st century, has claimed the lives of millions of people around the globe in less than two years. Since the virus initially affects the lungs of patients, X-ray imaging of the chest is helpful for effective diagnosis. Any method for automatic, reliable, and accurate screening of COVID-19 infection would be beneficial for rapid detection and reducing medical or healthcare professional exposure to the virus. In the past, Convolutional Neural Networks (CNNs) proved to be quite successful in the classification of medical images. In this study, an automatic deep learning classification method for detecting COVID-19 from chest X-ray images is suggested using a CNN. A dataset consisting of 3616 COVID-19 chest X-ray images and 10,192 healthy chest X-ray images was used. The original data were then augmented to increase the data sample to 26,000 COVID-19 and 26,000 healthy X-ray images. The dataset was enhanced using histogram equalization, spectrum, grays, cyan and normalized with NCLAHE before being applied to CNN models. Initially using the dataset, the symptoms of COVID-19 were detected by employing eleven existing CNN models; VGG16, VGG19, MobileNetV2, InceptionV3, NFNet, ResNet50, ResNet101, DenseNet, EfficientNetB7, AlexNet, and GoogLeNet. From the models, MobileNetV2 was selected for further modification to obtain a higher accuracy of COVID-19 detection. Performance evaluation of the models was demonstrated using a confusion matrix. It was observed that the modified MobileNetV2 model proposed in the study gave the highest accuracy of 98% in classifying COVID-19 and healthy chest X-rays among all the implemented CNN models. The second-best performance was achieved from the pre-trained MobileNetV2 with an accuracy of 97%, followed by VGG19 and ResNet101 with 95% accuracy for both the models. The study compares the compilation time of the models. The proposed model required the least compilation time with 2 h, 50 min and 21 s. Finally, the Wilcoxon signed-rank test was performed to test the statistical significance. The results suggest that the proposed method can efficiently identify the symptoms of infection from chest X-ray images better than existing methods.
In recent years, the area of Medicine and Healthcare has made significant advances with the assistance of computational technology. During this time, new diagnostic techniques were developed. Cancer is the world's second-largest cause of mortality, claiming the lives of one out of every six individuals. The colon cancer variation is the most frequent and lethal of the numerous kinds of cancer. Identifying the illness at an early stage, on the other hand, substantially increases the odds of survival. A cancer diagnosis may be automated by using the power of Artificial Intelligence (AI), allowing us to evaluate more cases in less time and at a lower cost. In this research, CNN models are employed to analyse imaging data of colon cells. For colon cell image classification, CNN with max pooling and average pooling layers and MobileNetV2 models are utilized. To determine the learning rate, the models are trained and evaluated at various Epochs. It's found that the accuracy of the max pooling and average pooling layers is 97.49% and 95.48%, respectively. And MobileNetV2 outperforms the other two models with the most remarkable accuracy of 99.67% with a data loss rate of 1.24.
COVID-19 illness has a <span>detrimental impact on the respiratory system, and the severity of the infection may be determined utilizing a selected imaging technique. Chest computer tomography (CT) imaging is a reliable diagnostic technique for finding COVID-19 early and slowing its progression. Recent research shows that deep learning algorithms, particularly convolutional neural network (CNN), may accurately diagnose COVID-19 using lung CT scan images. But in an emergency, detection accuracy simply is not enough. Determinants of data loss and classification completion time play a critical element. This study addresses the issue by finding the most efficient CNN model with the least data loss and classification time. Eight deep learning models, including Max Pooling 2D, Average Pooling 2D, VGG19, VGG16, MobileNetV2, InceptionV3, AlexNet, NFNet using a dataset of 16000 CT scans image data of COVID-19 and non-COVID-19 are compared in the study. Using the confusion matrix, the performance of the models is compared and together with the data loss and completion time. It is observed from the research that MobileNetV2 provides the highest accurate result of 99.12% with the least data loss of 0.0504% in the lowest classification completion time of 16.5secs per epoch. Thus, employing MobileNetV2 gives the best and the quickest result in an emergency.</span>
<span>In Bangladesh’s rural regions, almost 30% of the population lives in poverty. Rural residents also have restricted access to nursing and diagnostic services due to obsolete healthcare infrastructure. Consequently, as cardiac failure occurs, they usually fail to call the services and adopt the facilities. The internet of things (IoT) offers a massive advantage in addressing cardiac problems. This study proposed a smart IoT-based electrocardiogram (ECG) monitoring system for heart patients. The system is divided into several parts: ECG sensing network (data acquisition), IoT cloud (data transmission), result analysis (data prediction) and monetization. P, Q, R, S, and T are ECG signal properties fetched, pre-processed, analyzed and predicted to age level for future health management. ECG data are saved in the cloud and accessible via message queuing telemetry transport (MQTT) and hypertext transfer protocol (HTTP) servers. The linear regression method is utilized to determine the impact of electrocardiogram signal characteristics and error rate. The prediction was made to see how much variation there was in PQRST regularity and its sufficiency to be utilized in an ECG monitoring device. Recognizing the quality parameter values, acceptable outcomes are achieved. The proposed system will diminish future medical costs and difficulties for heart patients.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.