The compatibility of current collectors with the electrolyte plays a major role in the overall performance of lithium batteries, critical to obtain high storage capacity as well as excellent capacity retention. In lithium-ion batteries, in particular with cathodes that operate at high voltage such as lithium nickel cobalt manganese oxide, the cathodic current collector is aluminium and it is subjected to high oxidation potentials (>4 V vs. Li/Li + ). As a result, the composition of the electrolyte needs to be carefully designed in order to stabilise the battery performance as well as to protect the current collectors against corrosion. This study examines the role of a hybrid electrolyte composed of an ionic liquid (N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide or Nmethyl-N-propyl pyrrolidinium bis(fluorosulfonyl)imide) and a conventional electrolyte mixture (LiPF 6 salt and alkyl carbonate solvents) with correlation to their electrochemical behaviour and corrosion inhibition efficiency. The hybrid electrolyte was tested against battery grade aluminium current collectors electrochemically in a three-electrode cell configuration and the treated aluminium surface was characterised by SEM/EDXS, optical profilometry, FTIR, and XPS analysis. Based on the experimental results, the hybrid electrolytes allow an effective and improved passivation of aluminium and lower the extent of aluminium dissolution in comparison with the conventional lithium battery electrolytes and the neat ionic liquids at high anodic potentials (4.7 V vs. Li/Li + ). The mechanism of passivation behaviour is also further investigated. These observations provide a potential direction for developing improved hybrid electrolytes, based on ionic liquids, for higher energy density devices.npj Materials Degradation (2018) 2:13 ;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.