Background: COVID-19 and its social responses threaten the health of people living with HIV. We conducted a rapid-response interview to assess COVID-19 protective behaviors of people living with HIV and the impact of their responses on HIV-related health care. Method: Men and women living with HIV (N = 162) aged 20–37 years participating in a longitudinal study of HIV treatment and care completed routine study measures and an assessment of COVID-19–related experiences. Results: At baseline, most participants demonstrated HIV viremia, markers indicative of renal disorders, and biologically confirmed substance use. At follow-up, in the first month of responding to COVID-19, engaging in more social distancing behaviors was related to difficulty accessing food and medications and increased cancelation of health care appointments, both by self and providers. We observed antiretroviral therapy adherence had improved during the initial month of COVID-19 response. Conclusions: Factors that may pose added risk for COVID-19 severity were prevalent among people living with HIV, and those with greater risk factors did not practice more COVID-19 protective behaviors. Social distancing and other practices intended to mitigate the spread of COVID-19 interfered with HIV care, and impeded access to food and medications, although an immediate adverse impact on medication adherence was not evident. These results suggest social responses to COVID-19 adversely impacted the health care of people living with HIV, supporting continued monitoring to determine the long-term effects of co-occurring HIV and COVID-19 pandemics.
The aim of the study was to establish the frequencies of CYP2C9*1, *2, *3 and CYP2C19*1, *2 and *3 in the south Indian population and to compare them with the inter-racial distribution of the CYP2C9 and CYP2C19 genetic polymorphisms. Genotyping analyses of CYP2C9 and CYP2C19 were conducted in unrelated, healthy volunteers from the three south Indian states of Andhra Pradesh, Karnataka and Kerala, by the polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP). The allele frequencies of the populations of these three states were then pooled with our previous genotyping data of Tamilians (also in south India), to arrive at the distribution of CYP2C9 and CYP2C19 alleles in the south Indian population. Frequencies of CYP2C9 and CYP2C19 alleles and genotypes among various populations were compared using the two-tailed Fisher's exact test. The frequencies of CYP2C9*1, *2 and *3 in the south Indian population were 0.88 (95% CI 0.85-0.91), 0.04 (95% CI 0.02-0.06) and 0.08 (95% CI 0.06-0.11), respectively. The frequencies of CYP2C9 genotypes *1/*1, *1/*2, *1/*3, *2/*2, *2/*3 and *3/*3 were 0.78 (95% CI 0.74-0.82), 0.05 (95% CI 0.03-0.07), 0.15 (95% CI 0.12-0.18), 0.01 (95% CI 0.0-0.02), 0.01 (95% CI 0.0-0.02) and 0.0, respectively. CYP2C19*1, *2 and *3 frequencies were 0.64 (95% CI 0.60-0.68), 0.35 (95% CI 0.31-0.39) and 0.01 (95% CI 0.0-0.03), respectively. As a result of a significant heterogeneity, the data on CYP2C19 genotype frequencies were not pooled. The frequency of CYP2C9*2 mutant alleles in south Indians was higher than in Chinese and Caucasians, while CYP2C9*3 was similar to Caucasians. CYP2C19*2 was higher than in other major populations reported so far. The relatively high CYP2C19 poor-metabolizer genotype frequency of 12.6% indicates that over 28 million south Indians are poor metabolizers of CYP2C19 substrates.
An element essential for PCR detection of microbial agents in many sample types is the extraction step, designed to purify nucleic acids. Despite the importance of this step, yields have not been extensively compared across methods to determine whether the method used contributes to quantitative differences and the lack of commutability seen with existing clinical methods. This may in part explain why plasma and blood viral load assays have proven difficult to standardize. Also, studies have identified small DNA fragments of <200 bp in plasma (cell-free DNA [cfDNA]), which may include significant quantities of viral DNA. Our study evaluated extraction yields for 11 commercially available extraction methods, including 4 new methods designed to isolate cfDNA. Solutions of DNA fragments with sizes ranging from 50 to 1,500 bp were extracted, and then the eluates were tested by droplet digital PCR to determine the DNA fragment yield for each method. The results demonstrated a wide range of extraction yields across the variety of methods/instruments used, with the 50- and 100-bp fragment sizes showing especially inconsistent quantitative results and poor yields of less than 20%. Slightly higher, more consistent yields were seen with 2 of the 4 circulating cell-free extraction kits. These results demonstrate a significant need for further evaluation of nucleic acid yields across the variety of extraction platforms and highlight the poor extraction yields of small DNA fragments by existing methods. Further work is necessary to determine the impact of this inconsistency across instruments and the relevance of the low yields for smaller DNA fragments in clinical virology testing.
The recent development of the 1st WHO International Standard for human cytomegalovirus (CMV) and the introduction of commercially produced secondary standards have raised hopes of improved agreement among laboratories performing quantitative PCR for CMV. However, data to evaluate the trueness and uniformity of secondary standards and the consistency of results achieved when these materials are run on various assays are lacking. Three concentrations of each of the three commercially prepared secondary CMV standards were tested in quadruplicate by three real-time and two digital PCR methods. The mean results were compared in a pairwise fashion with nominal values provided by each manufacturer. The agreement of results among all methods for each sample and for like concentrations of each standard was also assessed. The relationship between the nominal values of standards and the measured values varied, depending upon the assay used and the manufacturer of the standards, with the degree of bias ranging from ؉0.6 to ؊1.0 log 10 IU/ml. The mean digital PCR result differed significantly among the secondary standards, as did the results of the real-time PCRs, particularly when plotted against nominal log 10 IU values. Commercially available quantitative secondary CMV standards produce variable results when tested by different real-time and digital PCR assays, with various magnitudes of bias compared to nominal values. These findings suggest that the use of such materials may not achieve the intended uniformity among laboratories measuring CMV viral load, as envisioned by adaptation of the WHO standard.R outine viral load measurements have become the standard of care for many patients, particularly those with severely compromised immune systems (1-5). However, despite their widespread clinical use, current testing strategies still have many limitations. Except for HIV and hepatitis B and C viruses, there has been little standardization of the testing process. Most methods are based on real-time PCR and have a high degree of result variability, particularly when testing among institutions is compared (6-9). The reasons for this variability are myriad. Real-time PCR is a dynamic process, with quantification based on normalization of the time to signal generation to a calibration curve that is in turn based on the use of calibration material with "known" values. Variations in any part of this complex procedure might theoretically affect result accuracy or precision. In fact, several factors have been shown to play a role (10); however, the most emphasis in the literature has been placed on the lack of universally accepted calibrators (11, 12). The lack of available international quantitative standards for many of the commonly tested viral analytes has led to the use of a wide variety of materials, intuitively reducing the agreement of results when common samples have been tested by different centers. It has been widely hoped that the development of such international reference material would help improve this situation. The...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.