Certain aquatic insects rapidly traverse water by secreting surfactants that exploit the Marangoni effect, inspiring the development of many self-propulsion systems. In this research, to demonstrate a new way of delivering liquid fuel to a water surface for Marangoni propulsion, a microfluidic pump driven by the flow-imbibition by a porous medium was integrated to create a novel self-propelling robot. After triggered by a small magnet, the liquid fuel stored in a microchannel is autonomously transported to an outlet in a mechanically tunable manner. We also comprehensively analyzed the effects of various design parameters on the robot’s locomotory behavior. It was shown that the traveled distance, energy density of fuel, operation time, and motion directionality were tunable by adjusting porous media, nozzle diameter, keel-extrusion, and the distance between the nozzle and water surface. The utilization of a microfluidic device in bioinspired robot is expected to bring out new possibilities in future development of self-propulsion system.
Stiffness of a swimming appendage is the key mediator between thrust generated and its beating frequency. Due to the advantageous role of flexible propulsors, they are widely adopted in previous swimming robots. As an optimal propulsor, stiffness is highly dependent on its beating frequency, and stiffness modulation is crucial when a robot is swimming with multiple beating frequencies. Herein, a novel swimming paddle that can switch two different stiffness states by sliding a laminate inside and its application to a swimming robot is studied. This paddle has 8 articulated joints and 20 passive flaps to achieve drag asymmetry with minimum control effort. A semiempirical model to estimate the stiffness change in good accuracy is also studied. The thrust modulation caused by stiffness change is comprehensively studied by varying frequency and range of motion. In addition, a nontethered swimming robot propelled by a bilateral pair of paddles is developed to investigate when and how the stiffness adjustment is useful. There is a threshold frequency dividing two regimes where one stiffness excels the other stiffness with respect to cost of transport. Finally, it is shown that the paddle thickness is closely related to the necessity of stiffness change mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.