In the present work, benzimidazole (BMZ), a well known nonlinear optical material, thin films were deposited using the modified liquid phase growth technique at different solution temperatures. The prepared samples were subjected to spectral, structural and surface analyses. Linear optical properties and third-order optical nonlinearity of the deposited BMZ thin films were analysed using UV-visible-NIR spectrum and Z-scan technique, respectively. The experimental results show that the BMZ films exhibit reverse saturable absorption and positive nonlinearity at 650 nm CW laser of power 5 mW. The measured third-order nonlinear susceptibility of the films is about 10 −10 esu. Optical limiting studies were performed using the same laser source and the potentiality of the BMZ films is reported.
In the present work, the Mn doped benzimidazole (BMZ) thin films were prepared by simple chemical bath deposition technique. The material was directly deposited as thin film on glass substrates and the metal concentration in the solution was varied in weight percentage in order to investigate the dopant effect on the properties of thin films. Similarly, the Mn doped BMZ films were deposited in different solution temperature to study the effect of deposition temperature on the properties of thin films. The PXRD and FT-IR spectroscopy are used to study the structural and the presence of functional groups in the BMZ medium. Depending upon the solution temperature, thickness of the films varying from 0.6 to 1.2 µm and the optical transparency of the samples increases with the increasing temperature up to 50 °C. Second Harmonic Generation (SHG) efficiency of the films is measured for all the films. Third order nonlinear optical properties of the films were analyzed using Zscan technique. The experimental results show that Mn doped BMZ films exhibits saturation absorption and negative nonlinearity.
Design and construction of the vertical dynamic gradient freeze (VDGF) system operating in the temperature range from 50 °C to 500 °C for growing organic single crystals are described. The design of VDGF system consists of furnace, control system, translation assembly, and image capturing device. Furnace has been constructed with eight zones controlled independently by a dynamic temperature control system for achieving desired thermal environment and multiple temperature gradients, which are essential for the growth of organic single crystals. The transparent furnace enables direct observation to record and monitor the solid-liquid interface and growth of crystals through charge coupled device based video camera. The system is fully computerized hence it is possible to retrieve the complete growth and furnace history. In order to investigate the functioning of the constructed VDGF system for the growth of organic single crystals, a well known organic nonlinear optical single crystal of benzimidazole was grown. The crystalline quality and the optical transmittance of the grown crystal were studied.
Abstract. Bulk single crystal of 4-aminobenzophenone with a size of 25 mm dia. and 35 mm length has been grown by vertical Bridgman technique. The crystal system of the grown crystal was confirmed by X-ray diffraction analysis. Crystalline perfection was analysed by high resolution X-ray diffraction studies. Chemical etching was carried out for the first time in 4-aminobenzophenone single crystal to study the defects presented in the grown crystal and the growth mechanism involved. Several organic etchants were employed with different etching time to select suitable etchant for studying dislocation pattern and other structural defects existing in the grown crystal. Etch patterns such as spirals and striations observed for the selective etchants provide considerable information on growth mechanism of the crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.