Systems featuring large magnetoresistance (MR) at room temperature and in small magnetic fields are attractive owing to their potential for applications in magnetic field sensing and data storage. Usually, the magnetic properties of materials are exploited to achieve large MR effects. Here, we report on an exceptionally large (>2000%), room-temperature, small-field (a few millitesla) MR effect in one-dimensional, nonmagnetic systems formed by molecular wires embedded in a zeolite host crystal. This ultrahigh MR effect is ascribed to spin blockade in one-dimensional electron transport. Its generic nature offers very good perspectives to exploit the effect in a wide range of low-dimensional systems.
Large negative magnetoconductance (MC) of ∼12% is observed in electrochemically doped polymer light-emitting diodes at sub-band-gap bias voltages (V bias ). Simultaneously, a positive magnetoefficiency (Mη) of 9% is observed at V bias = 2 V. At higher bias voltages, both the MC and Mη diminish while a negative magnetoelectroluminescence (MEL) appears. The negative MEL effect is rationalized by triplet-triplet annihilation that leads to delayed fluorescence, whereas the positive Mη effect is related to competition between spin mixing and exciton formation leading to an enhanced singlet:triplet ratio at nonzero magnetic field. The resultant reduction in triplet exciton density is argued to reduce detrapping of polarons in the recombination zone at low-bias voltages, explaining the observed negative MC. Regarding organic magnetoresistance, this study provides experimental data to verify existing models describing magnetic field effects in organic semiconductors, which contribute to better understanding hereof. Furthermore, we present indications of strong magnetic field effects related to interactions between trapped carriers and excitons, which specifically can be studied in electrochemically doped organic light-emitting diodes (OLEDs). Regarding light-emitting electrochemical cells (LECs), this work shows that delayed fluorescence from triplet-triplet annihilation substantially contributes to the electroluminescence and the device efficiency.
Room-temperature magnetoresistance of the order of 10% has been observed in organic semiconductors. We predict that even larger magnetoresistance can be realized in suitably synthesized doped conjugated polymers. In such polymers, ionization of dopants creates free charges that recombine with a rate governed by a competition between an applied magnetic field and random hyperfine fields. This leads to a spin-blocking effect that depends on the magnetic field. We show that the combined effects of spin blocking and charge blocking, the fact that two free charges cannot occupy the same site, lead to a magnetoresistance of almost two orders of magnitude. This magnetoresistance occurs even at vanishing electric field and is therefore a quasiequilibrium effect. The influences of the dopant strength, energetic disorder, and interchain hopping are investigated. We find that the dopant strength and energetic disorder have only little influence on the magnetoresistance. Interchain hopping strongly decreases the magnetoresistance because it can lift spin-blocking and charge-blocking configurations that occur in strictly one-dimensional transport. We provide suggestions for realization of polymers that should show this magnetoresistance.
Photonic crystal (PC) devices in the InP/InGaAsP/InP planar waveguide system exhibiting narrow bandwidth features were investigated for use as ultrasmall and tunable building blocks for photonic integrated circuits at the telecom wavelength of 1.55 μm. The H1 cavity, consisting of a single PC-hole left unetched, represents the smallest possible cavity in a dielectric material. The tuning of this cavity by temperature was investigated under the conditions as etched and after the holes were infiltrated with liquid crystal (LC), thus separating the contributions of host semiconductor and LC-infill. The shift and tuning by temperature of the MiniStopBand (MSB) in a W3 waveguide, consisting of three rows of holes left unetched, was observed after infiltrating the PC with LC. The samples finally underwent a third processing step of local wet underetching the PC to leave an InGaAsP membrane structure, which was optically assessed through the ridge waveguides that remained after the under etch and by SNOM-probing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.