Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I (PGI) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm for 5 h to examine shear stress-induced induction of COX-2/PGI Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of αβ-integrin, upregulation of COX-2, and release of PGI in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of αβ-integrin, upregulation of COX-2 gene and protein expression, and release of PGI in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1 mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI release compared with wild-type animals. In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I (PGI) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1).
This study describes cocultures of arterial smooth muscle cells (SMC) and endothelial cells (EC) and the influences of their heterotypic interactions on hydraulic conductivity (Lp), an important transport property. A unique feature of these cocultures is that ECs were first grown to confluence and then SMCs were inoculated. Bovine aortic smooth muscle cells (BASMCs) and bovine aortic endothelial cells (BAECs) were cocultured on Transwell Permeable Supports, and then exposed to a pressure-driven transmural flow. Lp across each culture was measured using a bubble tracking apparatus that determined water flux (Jv). Our results indicate that arterial Lp is significantly modulated by EC-SMC proximity, and serum content in culture. The Lp of cocultures was also compared to the predictions of a resistances-in-series model to distinguish the contributions of heterotypic interactions between SMCs and ECs. Conditions that lead to significantly reduced coculture Lp, compared to BAEC monoculture controls, have been uncovered and the lowest Lp in the literature for an in-vitro system are reported. In addition, VE-cadherin immunostaining of intact BAEC monolayers in each culture configuration reveals that EC-SMC proximity on a porous membrane has a dramatic influence on EC morphology patterns. The cocultures with the lowest Lp have ECs with significantly elongated morphology. Confocal imaging indicates that there are no direct EC-SMC contacts in coculture.
To evaluate the feasibility of capturing and interpreting retinal images in a workplace environment using a multimodal, cloud-based, diabetic retinal screening program combined with electronic self-reported questionnaires. The burden of diabetic retinopathy (DR) and other retinal conditions, healthcare utilization, and visual function were also assessed. Methods:A cross-sectional feasibility study was conducted at the Genentech, Inc., Campus Health Center. Eyes of participants were imaged using ultra-widefield (UWF) color fundus photography (CFP) and spectral-domain optical coherence tomography (SD-OCT). A cloud-based platform was used for the automated, seamless transfer of images to a remote reading center for evaluation for DR and other retinal pathologies. Electronic surveys collected participants'self-reported medical histories, healthcare utilization, and visual function data.Results: Among 100 participants (mean age, 43.9 years; 44% male), 33% of them selfreported diabetes. Eye examinations within the past 12 months were reported by 71% of all participants (n = 71/100) and by 85% (n = 28/33) of those with self-reported diabetes. Among participants with complete screening images from both UWF-CFP and SD-OCT, 20% (n = 6/30) of those with self-reported diabetes and 8.5% (n = 5/59) of participants with no history of diabetes were unaware they had mild/moderate nonproliferative DR. Among all participants, 20% (20/100) had a retinal finding, on either UWF-CFP or SD-OCT, or both, which prompted a referral for further evaluation. Conclusions:A retinal screening program deployed via a secure, scalable, and interoperable cloud-based platform was feasible and conveniently integrated into the workplace.Translational Relevance: Cloud-based platforms could be used to promote a secure, scalable, and interoperable system for retinal screening in nontraditional environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.