Road sediments from gully pots of the drainage system and stream sediments from local streams were investigated for the first time in the urban area of Idrija town, the central part of the second largest and strongly contaminated Hg mining district in the world. Hg concentrations in road sediments were lower than in stream sediments. They ranged from 16 to 110 mg/kg (Md = 29 mg/kg) for <0.125 mm particles and from 7 to 125 mg/kg (Md = 35 mg/kg) for <0.04 mm particles, while Hg concentrations in stream sediments ranged from 10 to 610 mg/kg (Md = 95 mg/kg) for <0.125 particles and from 10 to 440 mg/kg (Md = 105 mg/kg) for <0.04 mm particles. High Hg loadings in stream sediments were successfully linked with identified mercury sources (rocks containing mercury ore, areas of former ore roasting sites, ore residue dumps), because they are located in the drainage areas of streams, from which the sediments were collected. Links between Hg loadings in road sediments and identified mercury sources were not recognized. Solid phases of Hg were determined by thermo-desorption technique and are similar for both types of sediments. Results show the occurrence of three different forms: elemental mercury, mercury bound to matrix components and cinnabar. Approximately 50 % of Hg in samples consist of non-cinnabar fractions. This is important, since they are potentially bioavailable. An interesting new discovery according to previous research of environmental media from Idrija area by solid-phase Hg thermo-desorption technique is that elemental mercury was determined in almost all investigated sediments in minor amounts (Md = 3 %).
A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6-120 mg/kg) and slightly elevated As content (1-13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006-0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9-31.5 %) in the dust samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.