The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and β-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small β-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The β-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the β-annulus peptide for vaccine design.
Effective and safe vaccines against SARS-CoV-2 are highly desirable to prevent casualties and societal cost caused by Covid-19 pandemic. The receptor binding domain (RBD) of the surface-exposed spike protein of SARS-CoV-2 represents a suitable target for the induction of neutralizing antibodies upon vaccination. Small protein antigens typically induce weak immune response while particles measuring tens of nanometers are efficiently presented to B cell follicles and subsequently to follicular germinal center B cells in draining lymph nodes, where B cell proliferation and affinity maturation occurs. Here we prepared and analyzed the response to several DNA vaccines based on genetic fusions of RBD to four different scaffolding domains, namely to the foldon peptide, ferritin, lumazine synthase and β-annulus peptide, presenting from 6 to 60 copies of the RBD on each particle. Scaffolding strongly augmented the immune response with production of neutralizing antibodies and T cell response including cytotoxic lymphocytes in mice upon immunization with DNA plasmids. The most potent response was observed for the 24-residue β-annulus peptide scaffold that forms large soluble assemblies, that has the advantage of low immunogenicity in comparison to larger scaffolds. Our results support the advancement of this vaccine platform towards clinical trials.
The CRISPR/Cas system has emerged as a powerful and versatile genome engineering tool, revolutionizing biological and biomedical sciences, where an improvement of efficiency could have a strong impact. Here we present a strategy to enhance gene editing based on the concerted action of Cas9 and an exonuclease. Non-covalent recruitment of exonuclease to Cas9/gRNA complex via genetically encoded coiled-coil based domains, termed CCExo, recruited the exonuclease to the cleavage site and robustly increased gene knock-out due to progressive DNA strand recession at the cleavage site, causing decreased re-ligation of the nonedited DNA. CCExo exhibited increased deletion size and enhanced gene inactivation efficiency in the context of several DNA targets, gRNA selection, Cas variants, tested cell lines and type of delivery. Targeting a sequence-specific oncogenic chromosomal translocation using CCExo in cells of chronic myelogenous leukemia patients and in an animal model led to the reduction or elimination of cancer, establishing it as a highly specific tool for treating CML and potentially other appropriate diseases with genetic etiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.