Biologic scaffolds composed of naturally occurring extracellular matrix (ECM) can provide a microenvironmental niche that alters the default healing response toward a constructive and functional outcome. The present study showed similarities in the remodeling characteristics of xenogeneic ECM scaffolds when used as a surgical treatment for volumetric muscle loss in both a preclinical rodent model and five male patients. Porcine urinary bladder ECM scaffold implantation was associated with perivascular stem cell mobilization and accumulation within the site of injury, and de novo formation of skeletal muscle cells. The ECM-mediated constructive remodeling was associated with stimulus-responsive skeletal muscle in rodents and functional improvement in three of the five human patients.
Activation of cell division in the root apical meristem after germination is essential for postembryonic root development. Arabidopsis plants homozygous for a mutation in the ROOT MERISTEMLESS1 (RML1) gene are unable to establish an active postembryonic meristem in the root apex. This mutation abolishes cell division in the root but not in the shoot. We report the molecular cloning of the RML1 gene, which encodes the first enzyme of glutathione (GSH) biosynthesis, gamma-glutamylcysteine synthetase, and which is allelic to CADMIUM SENSITIVE2. The phenotype of the rml1 mutant, which was also evident in the roots of wild-type Arabidopsis and tobacco treated with an inhibitor of GSH biosynthesis, could be relieved by applying GSH to rml1 seedlings. By using a synchronized tobacco cell suspension culture, we showed that the G(1)-to-S phase transition requires an adequate level of GSH. These observations suggest the existence of a GSH-dependent developmental pathway essential for initiation and maintenance of cell division during postembryonic root development.
Improved viability of freshly harvested but untreated fat specimens may be expected as compared with grafts that have undergone additional manipulations. No unique combination of preparation or harvesting techniques appeared to be more advantageous on transplanted fat grafts at 3 months. This study also demonstrated a reliable animal model for future investigation into examining novel applications for augmenting fat graft survival.
Fat grafting is an unpredictable procedure that continues to challenge the field of plastic surgery due to irregular resorption. Applications for this procedure are broad in both reconstructive and cosmetic plastic surgery. Fat grafts are carefully obtained and manipulated to obtain better graft takes and results, yet there is no universal agreement on what constitutes an ideal methodology. The present study examines adipocyte viability from four commonly used donor sites in five subjects. No statistical differences in adipocyte viability were demonstrated among abdominal fat, thigh fat, flank fat, or knee fat donor sites that were immediately removed and untreated (p < 0.225). In addition, no differences were observed in representative tissue samples that were removed and centrifuged (thigh, p = 0.508; knee, p = 0.302; flank, p = 0.088; abdomen, p = 0.533). On the basis of these quantitative data, neither harvest location nor centrifugation demonstrated any advantage in terms of lipocyte viability. Fat tissue transfers from these common sites may be considered equal, and centrifugation does not appear to enhance immediate fat tissue viability before implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.