Abstract. We outline a method for constructing in parallel a collection of local clusters for a massive distributed graph. For a given input set of (vertex, cluster size) tuples, we compute approximations of personal PageRank vectors in parallel using Pregel, and sweep the results using MapReduce. We show our method converges to the serial approximate PageRank, and perform an experiment that illustrates the speed up over the serial method. We also outline a random selection and deconfliction procedure to cluster a distributed graph, and perform experiments to determine the quality of clusterings returned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.