IMPORTANCE Tobacco use disorder is associated with dysregulated neurocognitive function in the right inferior frontal gyrus (IFG)—one node in a corticothalamic inhibitory control (IC) network. OBJECTIVE To examine associations between IC neural circuitry structure and function and lapse/relapse vulnerability in 2 independent studies of adult smokers. DESIGN, SETTING, AND PARTICIPANTS In study 1, treatment-seeking smokers (n = 81) completed an IC task during functional magnetic resonance imaging (fMRI) before making a quit attempt and then were followed up for 10 weeks after their quit date. In study 2, a separate group of smokers (n = 26) performed the same IC task during fMRI, followed by completing a laboratory-based smoking relapse analog task. Study 1 was performed at Duke University Medical Center between 2008 and 2012; study 2 was conducted at the Medical University of South Carolina between 2013 and 2016. MAIN OUTCOMES AND MEASURES Associations between corticothalamic-mediated IC, gray-matter volume, and smoking lapse/relapse. RESULTS Of the 81 study participants in study 1 (cessation study), 45 were women (56%), with mean (SD) age, 38.4 (10.2) years. In study 1, smoking relapse was associated with less gray-matter volume (F1,74 = 28.32; familywise error P threshold = 0.03), greater IC task-related blood oxygenation level–dependent (BOLD) response in the right IFG (F1,78 = 14.87) and thalamus (F1,78 = 14.97) (P < .05), and weaker corticothalamic task-based functional connectivity (tbFC) (F1,77 = 5.87; P = .02). Of the 26 participants in study 2 (laboratory study), 15 were women (58%), with mean (SD) age, 34.9 (10.3). Similar to study 1, in study 2, greater IC-BOLD response in the right IFG (t23 = −2.49; β = −0.47; P = .02), and weaker corticothalamic tbFC (t22 = 5.62; β = 0.79; P < .001) were associated with smoking sooner during the smoking relapse-analog task. In both studies, corticothalamic tbFC mediated the association between IC performance and smoking outcomes. CONCLUSIONS AND RELEVANCE In these 2 studies, baseline differences in corticothalamic circuitry function were associated with mediated IC and smoking relapse vulnerability. These findings warrant further examination of interventions for augmenting corticothalamic neurotransmission and enhancing IC during the course of tobacco use disorder treatment.
Several decades of scientific research provide strong evidence that individuals who suffer from emotion dysregulation, such as that observed in depression and anxiety, are more vulnerable to addictive behavior. Furthermore, a growing body of studies indicates that chronic use of addictive substances dysregulates emotional responding. Emerging research also suggests that recurrent drug use and addiction are associated with deficits in the capacity to proactively regulate negative and positive emotions. This chapter synthesizes evidence from clinical and neuroscientific studies on effects of addictive behavior (including misuse of prescription opioids, addiction to cigarettes, and addiction to more powerful stimulants) on emotion dysregulation to outline an integrative model of emotion dysregulation in addiction. This model has implications for treatment development and further scientific investigation.
Background The transcranial magnetic stimulation (TMS)-elicited motor evoked potential (MEP) is a valuable measure for clinical evaluations of various neurological disorders and is used to determine resting motor threshold for repetitive TMS dosing. While MEP amplitude is primarily associated with motor system function, there is evidence that nonmotor factors may also influence amplitude. This experiment tested the hypotheses that manipulation of 2 factors (visual attention, cognitive regulation) in human participants would significantly affect MEP amplitude. Methods Blocks of MEPs were recorded from the dominant right hand as participants (N = 20) were instructed to shift their visual attention (toward and away from the hand) and cognitively regulate the MEPs (rest, attenuate MEP amplitude, potentiate MEP amplitude) using their thoughts (6 blocks, 20 pulses/block, randomized, 110% resting motor threshold). Results MEP amplitude was significantly affected by the direction of visual attention; looking away from the hand led to higher amplitudes (P = 0.003). The relationship with cognitive regulation was nonsignificant. Conclusions The significant effect of visual attention on MEP suggests that this should be a standardized parameter in clinical and research studies. These data underscore the importance of rigorous reporting of methods and use of standardized practices for MEP acquisition and TMS dosing to ensure consistent clinical measurement and treatment.
Nicotine addiction is associated with dysregulated inhibitory control (IC), mediated by corticothalamic circuitry including the right inferior frontal gyrus (rIFG). Among sated smokers, worse IC task performance and greater IC-related rIFG activity have been shown to be associated with greater relapse vulnerability. The present study investigated the effects of smoking abstinence on associations between IC task performance, rIFG activation, and smoking behavior. Smokers (N = 26, 15 female) completed an IC task (Go/Go/No-go) during fMRI scanning followed by a laboratory-based smoking relapse analog task (SRT) on two visits: once when sated and once following 24 h of smoking abstinence. During the SRT, smokers were provided with monetary rewards for incrementally delaying smoking. A significant main effect of No-go accuracy on latency to smoke during the SRT was observed when collapsing across smoking states (abstinent vs. sated). Similarly, a significant main effect of IC-related activation in rIFG on SRT performance was observed across states. The main effect of state, however, was non-significant in both of these models. Furthermore, the interaction between smoking state and No-go accuracy on SRT performance was non-significant, indicating a similar relationship between IC and lapse vulnerability under both sated and abstinent conditions. The state X rIFG activation interaction on SRT performance was likewise non-significant. Post-hoc whole brain analyses indicated that abstinence resulted in greater IC-related activity in the right middle frontal gyrus (MFG) and insula. Activation during IC in these regions was significantly associated with decreased No-go accuracy. Moreover, greater abstinence induced activity in right MFG during IC was associated with smoking sooner on the SRT. These findings are bolstered by the extant literature on the effects of nicotine on executive function and also contribute novel insights on how individual differences in behavioral and neuroimaging measures of IC may influence relapse propensity independent of smoking state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.