We present a quantitative analysis of superfluidity and superconductivity in dense matter from observations of isolated neutron stars in the context of the minimal cooling model. Our new approach produces the best fit neutron triplet superfluid critical temperature, the best fit proton singlet superconducting critical temperature, and their associated statistical uncertainties. We find that the neutron triplet critical temperature is likely 2.09 +4.37 −1.41 × 10 8 K and that the proton singlet critical temperature is 7.59 +2.48 −5.81 × 10 9 K. However, we also show that this result only holds if the Vela neutron star is not included in the data set. If Vela is included, the gaps increase significantly to attempt to reproduce Vela's lower temperature given its young age. Further including neutron stars believed to have carbon atmospheres increases the neutron critical temperature and decreases the proton critical temperature. Our method demonstrates that continued observations of isolated neutron stars can quantitatively constrain the nature of superfluidity in dense matter. PACS numbers: 97.60.Jd, 95.30.Cq, arXiv:1612.04289v2 [nucl-th]
Using a model for the equation of state and composition of dense matter and the magnitude of singlet proton superconductivity and triplet neutron superfluidity, we perform the first simultaneous fit of neutron star masses and radii determined from observations of quiescent low-mass x-ray binaries and luminosities and ages determined from observations of isolated neutron stars. We find that the Vela pulsar strongly determines the values inferred for the superfluid/superconducting gaps and the neutron star radius. We find, regardless of whether or not the Vela pulsar is included in the analysis, that the threshold density for the direct Urca process lies between the central density of 1.7 and 2 solar mass neutron stars. We also find that two solar mass stars are unlikely to cool principally by the direct Urca process because of the suppression by neutron triplet superfluidity.PACS numbers: 97.60. Jd, 95.30.Cq, arXiv:1812.00494v2 [nucl-th]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.