The membrane integrity of a cell is a well-accepted criterion for characterizing viable (active or inactive) cells and distinguishing them from damaged and membrane-compromised cells. This information is of major importance in studies of the function of microbial assemblages in natural environments, in order to assign bulk activities measured by various methods to the very active cells that are effectively responsible for the observations. To achieve this task for bacteria in freshwater and marine waters, we propose a nucleic acid doublestaining assay based on analytical flow cytometry, which allows us to distinguish viable from damaged and membrane-compromised bacteria and to sort out noise and detritus. This method is derived from the work of S. Barbesti et al. (Cytometry 40:214-218, 2000) which was conducted on cultured bacteria. The principle of this approach is to use simultaneously a permeant (SYBR Green; Molecular Probes) and an impermeant (propidium iodide) probe and to take advantage of the energy transfer which occurs between them when both probes are staining nucleic acids. A full quenching of the permeant probe fluorescence by the impermeant probe will point to cells with a compromised membrane, a partial quenching will indicate cells with a slightly damaged membrane, and a lack of quenching will characterize intact membrane cells identified as viable. In the present study, this approach has been adapted to bacteria in freshwater and marine waters of the Mediterranean region. It is fast and easy to use and shows that a large fraction of bacteria with low DNA content can be composed of viable cells. Admittedly, limitations stem from the unknown behavior of unidentified species present in natural environments which may depart from the established permeability properties with respect to the fluorescing dyes.
Lectin-binding patterns of seven human melanoma clones and variants selected from the same parental cell line and differing in their spontaneous metastatic potential in an animal model were compared by flow cytometry and Scatchard analysis. Human melanoma clones and variants with high and low metastatic potential could be distinguished by their peanut agglutinin (PNA)-binding patterns, but not by their wheat germ agglutinin (WGA)-, Ulex europaeus agglutinin I (UEA I)-, and soybean agglutinin (SBA)-binding patterns. Low metastatic clones and variants proved to be made up of single poorly peanut agglutinin-binding cell population (2.20-3.52 x 10(6) sites/cell, Ka = 2.48-2.75 x 10(6) M-1). By contrast, highly metastatic variants were found to be constituted by two cellular subpopulations, exhibiting respectively a moderate 2.62-3.72 x 10(6) sites/cell) and a high peanut agglutinin staining (17.68-18.76 x 10(6) sites/cell). One highly metastatic clone was found to be homogeneously constituted by a single population of cells strongly binding this lectin (18.86 x 10(6) sites/cell) with an association constant of 4.06 +/- 10(6) M-1. Using an EPICS V cytometer, these two subpopulations were sorted from a highly metastatic variant and tested for their metastatic abilities: cells with high PNA binding generated a higher frequency of metastases than did moderately PNA-binding cells. Following treatment with Vibrio cholerae neuraminidase, all cells from all variants and clones were brightly labeled by PNA, collecting in a single peak with similar fluorescence intensities. Electrophoresis of total cellular proteins and subsequent detection with labeled PNA om Western blots show two major PNA-reactive glycoproteins with apparent molecular weights of 140 and 110 kDa (MAGP1 and MAGP2), expressed only in highly metastatic cells, but which can be strongly labeled by PNA in slightly metastatic cells following a treatment with neuraminidase. These results provide evidence that the expression of terminal galactose (beta 1-3)N-acetyl galactosamine structure, positioned on MAGP1 and MAGP2 glycoproteins, is associated with the metastatic potential of human melanoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.