Kidneys are most easily segmented by convolutional neural networks (CNN) on contrast enhanced CT (CECT) images, but their segmentation accuracy may be reduced when only non-contrast CT (NCCT) images are available. The purpose of this work was to investigate the improvement in segmentation accuracy when implementing a generative adversarial network (GAN) to create virtual contrast enhanced (vCECT) images from non-contrast inputs. A 2D cycleGAN model, incorporating an additional idempotent loss function to restrict the GAN from making unnecessary modifications to data already in the translated domain, was trained to generate virtual contrast enhanced images on 286 paired non-contrast and contrast enhanced inputs. A 3D CNN trained on contrast enhanced images was applied to segment the kidneys in a test set of 20 paired non-contrast and contrast enhanced images. The non-contrast images were converted to virtual contrast enhanced images, then kidneys in both image conditions were segmented by the CNN. Segmentation results were compared to analyst annotations on non-contrast images visually and by Dice Coefficient (DC). Segmentation on virtual contrast enhanced images were more complete with fewer extraneous detections compared to non-contrast images in 16/20 cases. Mean(±SD) DC was 0.88(±0.80), 0.90(±0.03), and 0.95(±0.05) for non-contrast, virtual contrast enhanced, and real contrast enhanced, respectively. Virtual contrast enhancement visually improved segmentation quality, poor performing cases had their performance improved resulting in an overall reduction in DC variation, and the minimum DC increased from 0.65 to 0.85. This work provides preliminary results demonstrating the potential effectiveness of using a GAN for virtual contrast enhancement to improve CNN-based kidney segmentation on non-contrast images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.