Advances in the synthesis of low bandgap (Eg < 1.5 eV) conjugated polymers has produced organic materials capable of absorbing near-infrared (NIR) light (800-2500 nm), with these materials first applied to photodiode NIR detectors in 2007 as an alternative to more traditional inorganic devices. Although the development of organic NIR photodetectors has continued to advance, their ability to effectively detect wavelengths in the low-energy portion of the NIR spectrum is still limited. Efforts to date concerning the production of photodiode-based devices capable of detecting light beyond 1000 nm are reviewed.
A series of six conjugated oligomers consisting of a central pyrrolo[2,3‑d:5,4‑d′]bisthiazole (PBTz) end-capped with either thienyl, furyl, or phenyl groups have been prepared from N-alkyl-and N-aryl-pyrrolo[2,3‑d:5,4‑d′]bisthiazoles via Stille and Negishi cross-coupling. The full oligomeric series was thoroughly investigated via photophysical and electrochemical studies, in parallel with density functional theory (DFT) calculations, in order to correlate the cumulative effects of both aryl end-groups and N-functionalization on the resulting optical and electronic properties. Through comparison with the analogous dithieno[3,2-b:2′,3′-d]pyrrole (DTP) materials, the effect of replacing DTP with PBTz on the material HOMO energy and visible light absorption is quantified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.