While the investigation of creative writing as a research method is gathering apace, little work has been done into the specific case of hypertext fiction (fiction written through a digital medium). This paper argues that, while there remain certain similarities between paper-based and digital texts, fundamental differences in design and construction remain. If hypertext fictions are to be successfully understood, then the role and purpose of the digital writer needs to be more fully analysed as part of the creative process. This paper argues that Possible Worlds Theory offers a way forward. With its focus on the ontological structures created by hypertext fiction, Possible World Theory actively embraces narrative indeterminacy and ontological changeability. In this sense the method provides a structured means by which the creative manipulation of the unique affordances of a digital medium by a writer can be theorised.
Mesh generation lies at the interface of geological modeling and reservoir simulation. Highly skewed or very small grid cells may be necessary to accurately capture the geometry of geological features, but the resulting poorly scaled or small grid cells can have a substantial negative impact on simulator accuracy and speed. One way to minimize numerical errors caused by gridding complex structures is to simulate on high-quality Voronoi meshes, which reduce grid orientation effects in fluid flow. This work presents a complete methodology to create Voronoi simulation grids, model fluid flow in complex geological systems, and visualize the results. A recently developed Voronoi meshing method that can automatically generate provably good unstructured meshes that conform to input surfaces creating closed volumes is used. Initially an analytical benchmark simulation is presented to validate the quality of the meshes and simulation results and demonstrate the superiority of simulation results using Voronoi meshes over flexed-hexahedral meshes on a domain with internal features. Next, meshes are created for test structures representing four of the most common geological features in the subsurface: layering, pinch-out, an interior lens that tapers to zero thickness on all sides and a fault with offset. Two benchmark flow simulations are run for each test structure. Finally, a realistic geological example for CO$$_2$$
2
injection into an anticline is simulated. Three realizations of the Voronoi mesh at the same resolution are generated for the simulations. Each mesh is highly refined near the injection wells and coarse in areas of less interest. These three meshes are used to model the CO$$_2$$
2
plume in the subsurface as it migrates to the top of the structure and then fills downward. Simulations on the meshes with randomly generated elements inside the input volumes each give slightly different fingering patterns for the viscous-unstable buoyant gas flow. The results presented in this work show a promising step towards utilizing fully automated Voronoi meshing for subsurface flow simulations in complex geology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.