Objective Ion-incorporated zeolite is a widely used antimicrobial material studied for various dental applications. At present, there is no other systematic review that evaluates the effectiveness of zeolite in all dental materials. The purpose of this study was to review all available literature that analyzed the antimicrobial effects and/or mechanical properties of zeolite as a restorative material in dentistry. Material and Methods Following PRISMA guidelines, an exhaustive search of PubMed, Ovid Medline, Scopus, Embase, and the Dentistry & Oral Sciences Source was conducted. No language or time restrictions were used and the study was conducted from June 1, 2020 to August 17, 2020. Only full text articles were selected that pertained to the usage of zeolite in dental materials including composite resin, bonding agents, cements, restorative root material, cavity base material, prosthesis, implants, and endodontics. Results At the beginning of the study, 1534 studies were identified, of which 687 duplicate records were excluded. After screening for the title, abstract, and full texts, 35 articles remained and were included in the qualitative synthesis. An Inter-Rater Reliability (IRR) test, which included a percent user agreement and reliability percent, was conducted for each of the 35 articles chosen. Conclusion Although ion-incorporated zeolite may enhance the antimicrobial properties of dental materials, the mechanical properties of some materials, such as MTA and acrylic resin, may be compromised. Therefore, since the decrease in mechanical properties depends on zeolite concentration in the restorative material, it is generally recommended to add 0.2-2% zeolite by weight.
Zeolite can impart antibacterial properties to dental materials in the long-term when incorporated with inorganic cations. However, due to its porosity, it may jeopardize the mechanical integrity of the dental material. The aim of this project was to determine the effect on physical properties when zeolite is added to commercially available Ag-reinforced Glass Ionomer Cement (GIC). Sample groups were prepared according to the percentage of zeolite-clinoptilolite (0% - control, 0.5%, 1%, 2%, and 4% wt) added to Ag-GIC. Water sorption, solubility, Vickers hardness, and flexural strength were determined. Specifically, 10 × 2 mm circular disks were fabricated for the Vickers hardness, water sorption, and water solubility tests and 25 × 5 × 2 mm bars were created for the flexural strength test. The results from the surface hardness, water sorption, and flexural strength tests suggested that adding 0.5–4% wt of zeolite to Ag-reinforced GIC did not diminish its physical properties. However, the water solubility results showed that higher concentrations (2–4% wt) of zeolite had a statistically significant increase in water solubility compared to the control. Up to 4% wt zeolite can be incorporated into Ag-reinforced GIC without compromising mechanical properties. Incorporation of 0.5–1% wt zeolite to Ag-reinforced GIC will maintain an adequate surface hardness, water sorption, and flexural strength without compromising water solubility. Further research is needed to determine the effects of higher water solubility on clinical efficacy of zeolite modified Ag-GIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.