Molecular dynamics (MD) simulations are used in diverse scientific and engineering fields such as drug discovery, materials design, separations, biological systems, and reaction engineering. These simulations generate highly complex data sets that capture the 3D spatial positions, dynamics, and interactions of thousands of molecules. Analyzing MD data sets is key for understanding and predicting emergent phenomena and in identifying key drivers and tuning design knobs of such phenomena. In this work, we show that the Euler characteristic (EC) provides an effective topological descriptor that facilitates MD analysis. The EC is a versatile, low-dimensional, and easy-to-interpret descriptor that can be used to reduce, analyze, and quantify complex data objects that are represented as graphs/networks, manifolds/functions, and point clouds. Specifically, we show that the EC is an informative descriptor that can be used for machine learning and data analysis tasks such as classification, visualization, and regression. We demonstrate the benefits of the proposed approach through case studies that aim to understand and predict the hydrophobicity of self-assembled monolayers and the reactivity of complex solvent environments.
Molecular dynamics (MD) simulations are used in diverse scientific and engineering fields such as drug discovery, materials design, separations, biological systems, and reaction engineering. These simulations generate highly complex datasets that capture the 3D spatial positions, dynamics, and interactions of thousands of molecules. Analyzing MD datasets is key for understanding and predicting emergent phenomena and in identifying key drivers and tuning design knobs of such phenomena. In this work, we show that the Euler characteristic (EC) provides an effective topological descriptor that facilitates MD analysis. The EC is a versatile, low-dimensional, and easy-to-interpret descriptor that can be used to reduce, analyze, and quantify complex data objects that are represented as graphs/networks, manifolds/functions, and point clouds. Specifically, we show that the EC is an informative descriptor that can be used for machine learning and data analysis tasks such as classification, visualization, and regression. We demonstrate the benefits of the proposed approach through case studies that aim to understand and predict the hydrophobicity of self-assembled monolayers and the reactivity of complex solvent environments.
Molecular dynamics (MD) simulations are used in diverse scientific and engineering fields such as drug discovery, materials design, separations, biological systems, and reaction engineering. These simulations generate highly complex datasets that capture the 3D spatial positions, dynamics, and interactions of thousands of molecules. Analyzing MD datasets is key for understanding and predicting emergent phenomena and in identifying key drivers and tuning design knobs of such phenomena. In this work, we show that the Euler characteristic (EC) provides an effective topological descriptor that facilitates MD analysis. The EC is a versatile, low-dimensional, and easy-to-interpret descriptor that can be used to reduce, analyze, and quantify complex data objects that are represented as graphs/networks, manifolds/functions, and point clouds. Specifically, we show that the EC is an informative descriptor that can be used for machine learning and data analysis tasks such as classification, visualization, and regression. We demonstrate the benefits of the proposed approach through case studies that aim to understand and predict the hydrophobicity of self-assembled monolayers and the reactivity of complex solvent environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.