The phenotype and function of immune cells that reside at the maternal-fetal interface in humans and mice have been, and still are, extensively studied with the aim to fully comprehend the complex immunology of pregnancy. In pigs, information regarding immune cell phenotypes is limited and mainly focused on early gestation whereas late gestation has not yet been investigated. We designed a unique methodology tailored to the porcine epitheliochorial placenta, which allowed us to address immune phenotypes separately in the maternal endometrium (ME) and fetal placenta (FP) by flow cytometry. In-depth phenotyping of NK cells, non-conventional and conventional T cells within maternal blood (mBld), ME, FP, and fetal spleen (fSpln) revealed major differences between these anatomic sites. In both maternal compartments, all NK cells were perforin + and had NKp46-defined phenotypes indicative of latestage differentiation. Likewise, T cells with a highly differentiated phenotype including CD2 + CD8α + CD27 dim/− perforin + γδ T cells, CD27 − perforin + cytolytic T cells (CTLs), and T-bet + CD4 + CD8α + CD27 − effector memory T (Tem) cells prevailed within these compartments. The presence of highly differentiated T cells was also reflected in the number of cells that had the capacity to produce IFN-γ. In the FP, we found NK cells and T cell populations with a naive phenotype including CD2 + CD8α − CD27 + perforin − γδ T cells, T-bet − CD4 + CD8α − CD27 + T cells, and CD27 + perforin − CTLs. However, also non-naive T cell phenotypes including CD2 + CD8α + CD27 + perforin − γδ T cells, T-bet + CD4 + CD8α + CD27 − Tem cells, and a substantial proportion of CD27 − perforin + CTLs resided within this anatomic site. Currently, the origin or the cues that steer the differentiation of these putative effector cells are unclear. In the fSpln, NKp46 high NK cells and T cells with a naive phenotype prevailed. This study demonstrated that antigenexperienced immune cell phenotypes reside at the maternal-fetal interface, including the FP. Our methodology and our findings open avenues to study NK and T cell function over the course of gestation. In addition, this study lays a foundation to explore the interplay between immune cells and pathogens affecting swine reproduction.
In this study, the efficacy of the commercial modified live PRRSV-1 vaccine “Ingelvac PRRSFLEX® EU” was assessed in weaned piglets experimentally infected with PRRSV strain AUT15-33. Seventy-four weaned piglets were allocated to five groups. Vaccinated (groups 1, 2, and 5) and non-vaccinated piglets (groups 3 and 4), infected with either a low dose (103 TCID50/dose; groups 2 and 4) or a high dose (105 TCID50/dose; groups 1 and 3) of the virus, were compared regarding clinical signs, average daily weight gain (ADG), lung lesions, viral load in serum, oral swabs, and tissue samples. In comparison to vaccinated animals, coughing increased notably in the second week after challenge in non-vaccinated piglets. During the same time period, vaccinated, high-dose-infected piglets showed significantly higher ADG (p < 0.05) than non-vaccinated, high-dose-infected animals. All infected piglets reached approximately the same viremia levels, but vaccinated animals showed both a significantly reduced viral load in oral fluid (p < 0.05) and tissue samples and significantly reduced lung lesions (p < 0.05). In conclusion, vaccination was able to increase ADG, reduce the amount of viral shedding via oral fluids, and reduce the severity of lung lesions and the viral load in tissue samples under experimental conditions.
Interest in Ellegaard Göttingen Minipigs (EGMs) as a model in experimental medicine is continuously growing. The aim of this project is to increase the knowledge of the immune system of EGMs as information is still scarce. Therefore, we studied the postnatal maturation of their immune system from birth until 126 weeks of age. For the first 26 weeks of the study, animals were kept under pathogen-reduced conditions (SPF) and afterwards under conventional housing conditions. The development of the immune system was analyzed by monitoring changes in total numbers of leukocytes and lymphocytes of ten individuals and the composition of leukocyte populations by multi-color flow cytometry (FCM). We followed the presence of monocytes using monoclonal antibodies (mAbs) against CD172a+ and CD163+ and B cells based on the expression of CD79a. NK cells were distinguished as CD3-CD16+CD8α+/dim cells and further subdivided using NKp46 (CD335) expression into NKp46-, NKp46+, and NKp46high NK cells. T-cell receptor (TCR) γδ T cells were defined by the expression of TCR-γδ and different subsets were determined by their CD2 and perforin expression. TCR-αβ T cells were classified by their CD8β+ or CD4 expression. For monitoring their differentiation, expression of CD27 and perforin was investigated for CD8β++ T cells and CD8α together with CD27 for CD4+ T cells. We clearly detected a postnatal development of immune cell composition and identified phenotypes indicative of differentiation within the respective leukocyte subsets. Examination of the development of the antigen-specific immune system after transfer to different distinct housing conditions and after vaccination against common porcine pathogens such as porcine circovirus 2 (PCV2) revealed a markedly increased presence of more differentiated CD8+ and CD4+ T cells with central and effector memory T-cell phenotypes. To complement the findings, a PCV2 vaccine-specific antigen was used for in vitro restimulation experiments. We demonstrated antigen-specific proliferation of CD4+CD8α+CD27+ central and CD4+CD8α+CD27- effector memory T cells as well as antigen-specific production of TNF-α and IFN-γ. This study of postnatal immune development defines basic cellular immune parameters of EGMs and represents an important milestone for the use of EGMs for immunological questions in experimental medicine.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus, which emerged in Europe and U.S.A. in the late 1980s and has since caused huge economic losses. Infection with PRRSV causes mild to severe respiratory and reproductive clinical symptoms in pigs. Alteration of the host immune response by PRRSV is associated with the increased susceptibility to secondary viral and bacterial infections resulting in more serious and chronic disease. However, the expression profiles underlying innate and adaptive immune responses to PRRSV infection are yet to be further elucidated. In this study, we investigated gene expression profiles of PBMCs and CD8+ T cells after PRRSV AUT15-33 infection. We identified the highest number of differentially expressed genes in PBMCs and CD8+ T cells at 7 dpi and 21 dpi, respectively. The gene expression profile of PBMCs from infected animals was dominated by a strong innate immune response at 7 dpi which persisted through 14 dpi and 21 dpi and was accompanied by involvement of adaptive immunity. The gene expression pattern of CD8+ T cells showed a strong adaptive immune response to PRRSV, leading to the formation of highly differentiated CD8+ T cells starting from 14 dpi. The hallmark of the CD8+ T-cell response was the increased expression of effector and cytolytic genes (PRF1, GZMA, GZMB, GZMK, KLRK1, KLRD1, FASL, NKG7), with the highest levels observed at 21 dpi. Temporal clustering analysis of DEGs of PBMCs and CD8+ T cells from PRRSV-infected animals revealed three and four clusters, respectively, suggesting tight transcriptional regulation of both the innate and the adaptive immune response to PRRSV. The main cluster of PBMCs was related to the innate immune response to PRRSV, while the main clusters of CD8+ T cells represented the initial transformation and differentiation of these cells in response to the PRRSV infection. Together, we provided extensive transcriptomics data explaining gene signatures of the immune response of PBMCs and CD8+ T cells after PRRSV infection. Additionally, our study provides potential biomarker targets useful for vaccine and therapeutics development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.