Background The COVID-19 pandemic has driven demand for forecasts to guide policy and planning. Previous research has suggested that combining forecasts from multiple models into a single "ensemble" forecast can increase the robustness of forecasts. Here we evaluate the real-time application of an open, collaborative ensemble to forecast deaths attributable to COVID-19 in the U.S. Methods Beginning on April 13, 2020, we collected and combined one- to four-week ahead forecasts of cumulative deaths for U.S. jurisdictions in standardized, probabilistic formats to generate real-time, publicly available ensemble forecasts. We evaluated the point prediction accuracy and calibration of these forecasts compared to reported deaths. Results Analysis of 2,512 ensemble forecasts made April 27 to July 20 with outcomes observed in the weeks ending May 23 through July 25, 2020 revealed precise short-term forecasts, with accuracy deteriorating at longer prediction horizons of up to four weeks. At all prediction horizons, the prediction intervals were well calibrated with 92-96% of observations falling within the rounded 95% prediction intervals. Conclusions This analysis demonstrates that real-time, publicly available ensemble forecasts issued in April-July 2020 provided robust short-term predictions of reported COVID-19 deaths in the United States. With the ongoing need for forecasts of impacts and resource needs for the COVID-19 response, the results underscore the importance of combining multiple probabilistic models and assessing forecast skill at different prediction horizons. Careful development, assessment, and communication of ensemble forecasts can provide reliable insight to public health decision makers.
Significance This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the United States. Results show high variation in accuracy between and within stand-alone models and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public-health action.
A growth-mindset intervention teaches the belief that intellectual abilities can be developed. Where does the intervention work best? Prior research examined school-level moderators using data from the National Study of Learning Mindsets (NSLM), which delivered a short growth-mindset intervention during the first year of high school. In the present research, we used data from the NSLM to examine moderation by teachers’ mindsets and answer a new question: Can students independently implement their growth mindsets in virtually any classroom culture, or must students’ growth mindsets be supported by their teacher’s own growth mindsets (i.e., the mindset-plus-supportive-context hypothesis)? The present analysis (9,167 student records matched with 223 math teachers) supported the latter hypothesis. This result stood up to potentially confounding teacher factors and to a conservative Bayesian analysis. Thus, sustaining growth-mindset effects may require contextual supports that allow the proffered beliefs to take root and flourish.
We propose a Bayesian model for projecting first-wave COVID-19 deaths in all 50 U.S. states. Our model's projections are based on data derived from mobile-phone GPS traces, which allows us to estimate how socialdistancing behavior is "flattening the curve" in each state. In a two-week look-ahead test of out-of-sample forecasting accuracy, our model significantly outperforms the widely used model from the Institute for Health Metrics and Evaluation (IHME), achieving 42% lower prediction error: 13.2 deaths per day average error across all U.S. states, versus 22.8 deaths per day average error for the IHME model. Our model also provides an accurate, if slightly conservative, assessment of forecasting accuracy: in the same look-ahead test, 98% of data points fell within the model's 95% credible intervals. Our model's projections are updated daily at https://covid-19. tacc.utexas.edu/projections/. : medRxiv preprint Model overviewAt a high level, our model shares some key properties of the IHME model.Similarity 1: a statistical curve-fitting approach. Ours is not an epidemiological model, in the sense that we do not try to model disease transmission, 2 All rights reserved. No reuse allowed without permission.
Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics. Here, we show that hospital admissions coupled with mobility data can reliably predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission rates and healthcare demand. Using a forecasting model that has guided mitigation policies in Austin, TX, we estimate that the local reproduction number had an initial 7-d average of 5.8 (95% credible interval [CrI]: 3.6 to 7.9) and reached a low of 0.65 (95% CrI: 0.52 to 0.77) after the summer 2020 surge. Estimated case detection rates ranged from 17.2% (95% CrI: 11.8 to 22.1%) at the outset to a high of 70% (95% CrI: 64 to 80%) in January 2021, and infection prevalence remained above 0.1% between April 2020 and March 1, 2021, peaking at 0.8% (0.7-0.9%) in early January 2021. As precautionary behaviors increased safety in public spaces, the relationship between mobility and transmission weakened. We estimate that mobility-associated transmission was 62% (95% CrI: 52 to 68%) lower in February 2021 compared to March 2020. In a retrospective comparison, the 95% CrIs of our 1, 2, and 3 wk ahead forecasts contained 93.6%, 89.9%, and 87.7% of reported data, respectively. Developed by a task force including scientists, public health officials, policy makers, and hospital executives, this model can reliably project COVID-19 healthcare needs in US cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.