The Micro Satellite Electric Propulsion System (MEPS) program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS) for small satellites (<300Kg) and finds applications in orbit insertion after launcher separation, orbit maintenance, orbit transfers and deorbiting. The MEPS design was conceived as a "plug and play" subsystem that can be easily installed in a number of small spacecraft platforms, consisting of two Thruster Units (TU), Power Processing Unit (PPU), Xenon Propellant Tank Assembly (PTA) and Propellant Management Assembly (PMA). Being the "heart" of the system, the PPU supplies and monitors all the EPS voltages and currents. The objective of this paper is to present the design of the PPU whose concept is focused on high efficiency (> 92%), small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.
The objective of this paper is to present the design of the Power Processing Unit (PPU) of the Microsatellite Electric Propulsion System (MEPS) program currently being developed at Elegant Bread Board (EBB). High efficiency, small size and weight and high reliability are the main parameters that special focus is given. The propulsion system of MEPS consists of two small size and low power (up to 300W) Thruster Units (TUs) each one composed of a Hall Effect Thruster and a Cathode, a single Propellant Management and Tank Assembly (PMA/PTA) and a single PPU. The PPU designed for the EBB phase has no redundancy, is fully flexible and capable of driving two different TU types (Rafael’s CAM-200 coupled with Rafael’s Heaterless Hollow Cathode (RHHC) and SITAEL’s HT100 coupled with SITAEL’s Heated Hollow Cathode (HC1)). This paper illustrates the core design requirements and important aspects on which the design was based. Preliminary results obtained from the coupling tests on the critical parts developed at Bread Board (BB), which contributed to the current design are also briefly depicted. Last but not least, the future development steps of the program that can become the driving factor for the successful implementation of an easily adjustable PPU compatible with a wide range of low power Electric Propulsion Systems (EPSs) are demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.