An inverse planning algorithm for determining the intensity-modulated beams that will most closely generate a desired dose distribution is presented. The algorithm is three-dimensional and does not explicitly depend on beam energies and modalities. It allows a single prescription dose or a window of acceptable doses to be specified for the target, with additional constraints to account for under- or over-dosing. For the protection of organs at risk, it provides maximum-dose and dose-volume constraints. The latter apply to the entire volume of the organ exposed to the corresponding dose levels. Several levels of each type of constraint, with varying penalty weights, may be specified for each organ. The objective function that serves as the measure of the goodness of the solution is of the least-squares type and is minimized using conjugate gradient methods. Typical clinical cases involving 40,000 points and 4000 rays to be determined require about 10 min of CPU time on a DEC AlphaStation. Results are presented for two clinical sites, prostate and lung. The optimization algorithm yielded plans that featured higher target dose homogeneity, compared with the human planner's plan, while selectively sparing more of the normal organs at the desired dose regions.
An algorithm, which calculates the motions of the collimator jaws required to generate a given arbitrary intensity profile, is presented. The intensity profile is assumed to be piecewise linear, i.e., to consist of segments of straight lines. The jaws move unidirectionally and continuously with variable speed during radiation delivery. During each segment, at least one of the jaws is set to move at the maximum permissible speed. The algorithm is equally applicable for multileaf collimators (MLC), where the transmission through the collimator leaves is taken into account. Examples are presented for different intensity profiles with varying degrees of complexity. Typically, the calculation takes less than 10 ms on a VAX 8550 computer.
It has been shown that intensity-modulated fields have the potential to deliver optimum dose distributions, i.e., high dose uniformity in the target and lower doses in the surrounding critical organs. One way to deliver such fields is by using dynamic multileaf collimation (DMLC). This capability is already available in research mode on some treatment machines. While much effort has been devoted to developing algorithms for DMLC, the mechanical reliability of this new treatment delivery mode has not been fully studied. In this work, we report a series of tests designed to investigate the mechanical aspects of DMLC and their implications on dosimetry. Specifically, these tests were designed to examine (1) the stability of leaf speed, (2) the effect of lateral disequilibrium on dose profiles between adjacent leaves, (3) the significance of acceleration and deceleration of leaf motion, (4) the effect of positional accuracy and rounded-end of the leaves, and (5) create a simple test pattern that may serve as a basis for routine quality assurance checks. Results of these tests are presented. The implications on dosimetry and consideration for the design of leaf motion are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.