A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression.
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Herein, the restricted expression of serum response factors (SRF) closely overlapped with Nkx2-5 and GATA4 transcripts in early chick embryos coinciding with the earliest appearance of cardiac ␣-actin (␣CA) transcripts and nascent myocardial cells. The combinatorial expression of SRF, a MADS box factor Nkx2-5 (a NK4 homeodomain), and/or GATA4, a dual C4 zinc finger protein, in heterologous CV1 fibroblasts and Schneider 2 insect cells demonstrated synergistic induction of ␣CA promoter activity. These three factors induced endogenous ␣CA mRNA over a 100-fold in murine embryonic stem cells. In addition, the DNA-binding defective mutant Nkx2-5pm efficiently coactivated the ␣CA promoter in the presence of SRF and GATA4 in the presence of all four SREs and was substantially weakened when individual SREs were mutated and or serially deleted. In contrast, the introduction of SRFpm, a SRF DNA-binding mutant, blocked the activation with all of the ␣CA promoter constructions. These assays indicated a dependence upon cooperative SRF binding for facilitating the recruitment of Nkx2-5 and GATA4 to the ␣CA promoter. Furthermore, the recruitment of Nkx2-5 and GATA4 by SRF was observed to strongly enhance SRF DNA binding affinity. This mechanism allowed for the formation of higher ordered ␣CA promoter DNA binding complexes, led to a model of SRF physical association with Nkx2-5 and GATA4.
Tumor necrosis factor (TNF) is a pluripotent activator of inflammation by inducing a proinflammatory cytokine cascade. This phenomenon is mediated, in part, through inducible expression of the CXC chemokine, interleukin-8 (IL-8). In this study, we investigate the role of TNF-inducible reactive oxygen species (ROS) in IL-8 expression by “monocyte-like” U937 histiocytic lymphoma cells. TNF is a rapid activator of IL-8 gene expression by U937, producing a 50-fold induction of mRNA within 1 hour of treatment. In gene transfection assays, the effect of TNF requires the presence of an inducible nuclear factor-κB (NF-κB) (Rel A) binding site in the IL-8 promoter. TNF treatment induces a rapid translocation of the 65 kD transcriptional activator NF-κB subunit, Rel A, whose binding in the nucleus occurs before changes in intracellular ROS. Pretreatment (or up to 15 minutes posttreatment) relative to TNF with the antioxidant dimethyl sulfoxide (DMSO) (2% [vol/vol]) blocks 80% of NF-κB–dependent transcription. Surprisingly, however, DMSO has no effect on inducible Rel A binding. Similar selective effects on NF-κB transcription are seen with the unrelated antioxidants, N-acetylcysteine (NAC) and vitamin C. These data indicate that TNF induces a delayed ROS-dependent signalling pathway that is required for NF-κB transcriptional activation and is separable from that required for its nuclear translocation. Further definition of this pathway will yield new insights into inflammation initiated by TNF signalling.
Activating Transcription Factor-2 is a sequence-specific DNA-binding protein that belongs to the bZIP family of proteins and plays diverse roles in the mammalian cells. In response to stress stimuli, it activates a variety of gene targets including cyclin A, cyclin D and c-jun, which are involved in oncogenesis in various tissue types. ATF-2 expression has been correlated with maintenance of a cancer cell phenotype. However, other studies demonstrate an antiproliferative or apoptotic role for ATF-2. In this review, we summarize the signaling pathways that activate ATF-2, as well as its downstream targets. We examine the role of ATF-2 in carcinogenesis with respect to other bZIP proteins, using data from studies in human cancer cell lines, human tumours and mouse models, and we propose a potential model for its function in carcinogenesis, as well as a theoretical basis for its utility in anticancer drug design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.