Structural data on archaebacterial lipids is presented with emphasis on the ether lipids of the methanogens. These ether lipids normally account for 80-95% of the membrane lipids with the remaining 5-20% of neutral squalenes and other isoprenoids. Genus-specific combinations of various lipid core structures found in methanogens include diether-tetraether, dietherhydroxydiether, or diether-macrocyclic diether-tetraether lipid moieties. Some species have only the standard diether core lipid, but none are known with predominantly tetraether lipids as found in certain sulfur-dependent archaebacteria. The relative proportions of these lipid cores are known to vary in relation to growth conditions in Methanococcus jannaschii and Methanobacterium thermoautotrophicum. Polar headgroups in glycosidic or phosphodiester linkage to the sn-1 or sn-1' carbons of glycerol consist of polyols, carbohydrates, and amino compounds. The available structural data indicate a close similarity among the polar lipids synthesized within the species of the same genus. Detection of lipid molecular ions by mass spectrometry of total polar lipid extracts is a promising technique to provide valuable comparative data. Since these lipid structures are stable within the extreme environments that many archaebacteria inhabit, there may be specific applications for their use in biotechnology.
Ether lipids were obtained from a wide range of archaeobacteria grown at extremes of pH, temperature, and salt concentration. With the exception of Sulfolobus acidocaldarius, unilamellar and/or multilamellar liposomes could be prepared from emulsions of total polar lipid extracts by pressure extrusion through filters of various pore sizes. Dynamic light scattering, and electron microscopy revealed homogeneous liposome populations with sizes varying from 40 to 230 nm, depending on both the lipid source and the pore size of the filters. Leakage rates of entrapped fluorescent or radioactive compounds established that those archaeobacterial liposomes that contained tetraether lipids were the most stable to high temperatures, alkaline pH, and serum proteins. Most ether liposomes were stable to phospholipase A2, phospholipase B and pancreatic lipase. These properties of archaeobacterial liposomes make them attractive for applications in biotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.