The problem of computing category agnostic bounding box proposals is utilized as a core component in many computer vision tasks and thus has lately attracted a lot of attention. In this work we propose a new approach to tackle this problem that is based on an active strategy for generating box proposals that starts from a set of seed boxes, which are uniformly distributed on the image, and then progressively moves its attention on the promising image areas where it is more likely to discover well localized bounding box proposals. We call our approach AttractioNet and a core component of it is a CNN-based category agnostic object location refinement module that is capable of yielding accurate and robust bounding box predictions regardless of the object category.We extensively evaluate our AttractioNet approach on several image datasets (i.e. COCO, PASCAL, ImageNet detection and NYU-Depth V2 datasets) reporting on all of them state-of-the-art results that surpass the previous work in the field by a significant margin and also providing strong empirical evidence that our approach is capable to generalize to unseen categories. Furthermore, we evaluate our AttractioNet proposals in the context of the object detection task using a VGG16-Net based detector and the achieved detection performance on COCO manages to significantly surpass all other VGG16-Net based detectors while even being competitive with a heavily tuned ResNet-101 based detector. Code as well as box proposals computed for several datasets are available at:: https://github.com/gidariss/AttractioNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.