Abstract. Authorship identification can be viewed as a text categorization task. However, in this task the most frequent features appear to be the most important discriminators, there is usually a shortage of training texts, and the training texts are rarely evenly distributed over the authors. To cope with these problems, we propose tensors of second order for representing the stylistic properties of texts. Our approach requires the calculation of much fewer parameters in comparison to the traditional vector space representation. We examine various methods for building appropriate tensors taking into account that similar features should be placed in the same neighborhood. Based on an existing generalization of SVM able to handle tensors we perform experiments on corpora controlled for genre and topic and show that the proposed approach can effectively handle cases where only limited training texts are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.