Abstract:Equalisation is one of the most commonly-used tools in sound production, allowing users to control the gains of different frequency components in an audio signal. In this paper we present a model for mapping a set of equalisation parameters to a reduced dimensionality space. The purpose of this approach is to allow a user to interact with the system in an intuitive way through both the reduction of the number of parameters and the elimination of technical knowledge required to creatively equalise the input audio. The proposed model represents 13 equaliser parameters on a two-dimensional plane, which is trained with data extracted from a semantic equalisation plug-in, using the timbral adjectives warm and bright. We also include a parameter weighting stage in order to scale the input parameters to spectral features of the audio signal, making the system adaptive. To maximise the efficacy of the model, we evaluate a variety of dimensionality reduction and regression techniques, assessing the performance of both parameter reconstruction and structural preservation in low-dimensional space. After selecting an appropriate model based on the evaluation criteria, we conclude by subjectively evaluating the system using listening tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.