Enzyme loading of polymersomes requires permeability to enable them to interact with the external environment, typically requiring addition of complex functionality to enable porosity. Herein, we describe a synthetic route toward intrinsically permeable polymersomes loaded with functional proteins using initiator-free visible light-mediated polymerization-induced self-assembly (photo-PISA) under mild, aqueous conditions using a commercial monomer. Compartmentalization and retention of protein functionality was demonstrated using green fluorescent protein as a macromolecular chromophore. Catalytic enzyme-loaded vesicles using horseradish peroxidase and glucose oxidase were also prepared and the permeability of the membrane toward their small molecule substrates was revealed for the first time. Finally, the interaction of the compartmentalized enzymes between separate vesicles was validated by means of an enzymatic cascade reaction. These findings have a broad scope as the methodology could be applied for the encapsulation of a large range of macromolecules for advancements in the fields of nanotechnology, biomimicry, and nanomedicine.
Covalent PEGylation of biologics has been widely employed to reduce immunogenicity, while improving stability and half-life in vivo. This approach requires covalent protein modification, creating a new entity. An alternative approach is stabilization by encapsulation into polymersomes; however this typically requires multiple steps, and the segregation requires the vesicles to be permeable to retain function. Herein, we demonstrate the one-pot synthesis of therapeutic enzyme-loaded vesicles with size-selective permeability using polymerization-induced self-assembly (PISA) enabling the encapsulated enzyme to function from within a confined domain. This strategy increased the proteolytic stability and reduced antibody recognition compared to the free protein or a PEGylated conjugate, thereby reducing potential dose frequency and the risk of immune response. Finally, the efficacy of encapsulated l-asparaginase (clinically used for leukemia treatment) against a cancer line was demonstrated, and its biodistribution and circulation behavior in vivo was compared to the free enzyme, highlighting this methodology as an attractive alternative to the covalent PEGylation of enzymes.
Cylinders are fascinating structures with uniquely high surface area, internal volume, and rigidity. On the nanoscale, a broad range of applications have demonstrated advantageous behavior of cylindrical micelles or bottlebrush polymers over traditional spherical nano-objects. In the past, obtaining pure samples of cylindrical nanostructures using polymer building blocks via conventional self-assembly strategies was challenging. However, in recent years, the development of advanced methods including polymerization-induced self-assembly, crystallization-driven self-assembly, and bottlebrush polymer synthesis has facilitated the easy synthesis of cylindrical nano-objects at industrially relevant scales. In this Perspective, we discuss these techniques in detail, highlighting the advantages and disadvantages of each strategy and considering how the cylindrical nanostructures that are obtained differ in their chemical structure, physical properties, colloidal stability, and reactivity. In addition, we propose future challenges to address in this rapidly expanding field.
The dynamic interactions of membranes, particularly their fusion and fission, are critical for the transmission of chemical information between cells. Fusion is primarily driven by membrane tension built up through membrane deformation. For artificial polymersomes, fusion is commonly induced via the external application of a force field. Herein, fusion-promoted development of anisotropic tubular polymersomes (tubesomes) was achieved in the absence of an external force by exploiting the unique features of aqueous ring-opening metathesis polymerization-induced self-assembly (ROMPISA). The out-of-equilibrium tubesome morphology was found to arise spontaneously during polymerization, and the composition of each tubesome sample (purity and length distribution) could be manipulated simply by targeting different core-block degrees of polymerization (DPs). The evolution of tubesomes was shown to occur via fusion of “monomeric” spherical polymersomes, evidenced most notably by a step-growth-like relationship between the fraction of tubular to spherical nano-objects and the average number of fused particles per tubesome (analogous to monomer conversion and DP, respectively). Fusion was also confirmed by Förster resonance energy transfer (FRET) studies to show membrane blending and confocal microscopy imaging to show mixing of the polymersome lumens. We term this unique phenomenon polymerization-induced polymersome fusion, which operates via the buildup of membrane tension exerted by the growing polymer chains. Given the growing body of evidence demonstrating the importance of nanoparticle shape on biological activity, our methodology provides a facile route to reproducibly obtain samples containing mixtures of spherical and tubular polymersomes, or pure samples of tubesomes, of programmed length. Moreover, the capability to mix the interior aqueous compartments of polymersomes during polymerization-induced fusion also presents opportunities for its application in catalysis, small molecule trafficking, and drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.