Virus-specific CD4+ T helper lymphocytes are critical to the maintenance of effective immunity in a number of chronic viral infections, but are characteristically undetectable in chronic human immunodeficiency virus-type 1 (HIV-1) infection. In individuals who control viremia in the absence of antiviral therapy, polyclonal, persistent, and vigorous HIV-1-specific CD4+ T cell proliferative responses were present, resulting in the elaboration of interferon-gamma and antiviral beta chemokines. In persons with chronic infection, HIV-1-specific proliferative responses to p24 were inversely related to viral load. Strong HIV-1-specific proliferative responses were also detected following treatment of acutely infected persons with potent antiviral therapy. The HIV-1-specific helper cells are likely to be important in immunotherapeutic interventions and vaccine development.
Antibody levels predict vaccine efficacy
Symptomatic COVID-19 infection can be prevented by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. A “correlate of protection” is a molecular biomarker to measure how much immunity is needed to fight infection and is key for successful global immunization programs. Gilbert
et al
. determined that antibodies are the correlate of protection in vaccinated individuals enrolled in the Moderna COVE phase 3 clinical trial (see the Perspective by Openshaw). By measuring binding and neutralizing antibodies against the viral spike protein, the authors found that the levels of both antibodies correlated with the degree of vaccine efficacy. The higher the antibody level, the greater the protection afforded by the messenger RNA (mRNA) vaccine. Antibody levels that predict mRNA vaccine efficacy can therefore be used to guide vaccine regimen modifications and support regulatory approvals for a broader spectrum of the population. —PNK
Cytotoxic T lymphocytes (CTLs) lyse virally infected cells that display viral peptide epitopes in association with major histocompatibility complex (MHC) class I molecules on the cell surface. However, despite a strong CTL response directed against viral epitopes, untreated people infected with the human immunodeficiency virus (HIV-1) develop AIDS. To resolve this enigma, we have examined the ability of CTLs to recognize and kill infected primary T lymphocytes. We found that CTLs inefficiently lysed primary cells infected with HIV-1 if the viral nef gene product was expressed. Resistance of infected cells to CTL killing correlated with nef-mediated downregulation of MHC class I and could be overcome by adding an excess of the relevant HIV-1 epitope as soluble peptide. Thus, Nef protected infected cells by reducing the epitope density on their surface. This effect of nef may allow evasion of CTL lysis by HIV-1-infected cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.