The partially cavitating two-dimensional hydrofoil problem is treated using nonlinear theory by employing a low-order potential-based boundary-element method. The cavity shape is determined in the framework of two independent boundary-value problems; in the first, the cavity length is specified and the cavitation number is unknown, and in the second the cavitation number is known and the cavity length is to be determined. In each case, the position of the cavity surface is determined in an iterative manner until both a prescribed pressure condition and a zero normal velocity condition are satisfied on the cavity. An initial approximation to the nonlinear cavity shape, which is determined by satisfying the boundary conditions on the hydrofoil surface rather than on the exact cavity surface, is found to differ only slightly from the converged nonlinear result.The boundary element method is then extended to treat the partially cavitating three-dimensional hydrofoil problem. The three-dimensional kinematic and dynamic boundary conditions are applied on the hydrofoil surface underneath the cavity. The cavity planform at a given cavitation number is determined via an iterative process until the thickness at the end of the cavity at all spanwise locations becomes equal to a prescribed value (in our case, zero). Cavity shapes predicted by the present method for some three-dimensional hydrofoil geometries are shown to satisfy the dynamic boundary condition to within acceptable accuracy. The method is also shown to predict the expected effect of foil thickness on the cavity size. Finally, cavity planforms predicted from the present method are shown to be in good agreement to those measured in a cavitating three-dimensional hydrofoil experiment, performed in MIT's cavitation tunnel.
In this paper, a boundary element method (BEM) for cavitating hydrofoils moving steadily under a free surface is presented and its performance is assessed through systematic convergence studies, comparisons with other methods, and existing measurements. The cavitating hydrofoil part and the free surface part of the problem are solved separately, with the effects of one on the other being accounted for in an iterative manner. Both the cavitating hydrofoil surface and the free surface are modeled by a low-order potential based panel method using constant strength dipole and source panels. The induced potential by the cavitating hydrofoil on the free surface and by the free surface on the hydrofoil are determined in an iterative sense and considered on the right hand side of the discretized integral equations. The source strengths on the free surface are expressed by applying the linearized free surface conditions. In order to prevent upstream waves the source strengths from some distance in front of the hydrofoil to the end of the truncated upstream boundary are enforced to be equal to zero. No radiation condition is enforced at the downstream boundary or at the transverse boundary for the three-dimensional case. First, the BEM is validated in the case of a point vortex and some convergence studies are done. Second, the BEM is applied to 2-D hydrofoil geometry both in fully wetted and in cavitating flow conditions and the predictions are compared to those of other methods and of the measurements in the literature. The effects of Froude number, the cavitation number and the submergence depth of the hydrofoil from free surface are discussed. Then, the BEM is validated in the case of a 3-D point source. The effects of grid and of the truncated domain size on the results are investigated. Lastly, the BEM is applied to a 3-D rectangular cavitating hydrofoil and the effect of number of iterations and the effect of Froude number on the results are discussed.
A low-order potential based 3-D boundary element method (BEM) is presented for the analysis of unsteady sheet cavitation on supercavitating and surfacepiercing propellers. The method has been developed in the past for the prediction of unsteady sheet cavitation for conventional propellers. To allow for the treatment of supercavitating propellers, the method is extended to model the separated flow behind trailing edge with nonzero thickness. For surface-piercing propellers, the negative image method is used, which applies the linearized free surface boundary condition with the infinite Froude number assumption. The method is shown to converge quickly with grid size and time step size. The predicted cavity planforms and propeller loadings also compare well with experimental observations and measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.