SummaryBackgroundOne of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes.MethodsWe pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue.FindingsWe used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target.InterpretationSince 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries.FundingWellcome Trust.
The influence of target thickness and solution treatment on the ballistic behaviour of AA7075 targets has been investigated by both numerical and experimental methods. In numerical simulation, the target thickness was varied from 19 to 26 mm and an Ogive nose shaped projectile of 7.62 mm diameter with inlet velocities ranging between 800–875 m/s was considered. In order to justify the numerical observations, high velocity ballistic experiments were conducted on AA7075-T651 and the solution treated plates of various thicknesses (12, 16, 18, 20, 22 and 25 mm). For this experimental study, a deformable form projectile with dimensions of 7.62 × 51 mm and an inlet velocity of 850 ± 20 m/s was used. Microstructures of ballistic test samples were analysed using an optical microscope. Numerical analysis using ABAQUS predicted the minimum thickness required to resist complete penetration to be 20 mm in the case of AA7075 plates in the T651 condition, while experimental results showed it to be 21 mm. In the case of AA7075 solution treated plates, numerical simulation analysis predicted the minimum required plate thickness to resist complete penetration to be 24 mm, while the experimental results showed it to be 23 mm. Post ballistic microstructure analysis revealed that there was no change in the microstructure in the AA7075-T651 condition plates. Solution treated plates showed deformation of grains nearer to the impact region with the formation of adiabatic shear bands. In the case of the T651 plate, the mode of fracture was brittle, resulting in splinters, whereas it was petalling in the case of the solution-treated plates. The numerically predicted depth of penetration on both targets was reasonably close to experimental results with an average of 4% error.
Results of the research carried out in the fields of Agriculture, Animal Husbandry, Poultry farming, Pisciculture, Rabbit farming by the Field Research Laboratory, Leh has been reviewed. The aim is to develop suitable techniques for the farmers of these high altitude areas, in the respective fields, to ultimately meet the local requirements and cut down the costly transportation of these items by air/road. In addition, work has also been taken up lately in the utilisation of non-conventional sources of energy with reasonable amount of success, to conserve the existing fuel resources.
Mg-Zn alloys are promising candidates for their application in automotive, electronics and aerospace applications. For their successful application, one of the performance parameters that needs to be evaluated is their creep behavior at elevated temperatures. Hence this paper evaluates the high temperature creep behavior of wrought ZM21 magnesium alloy by impression test The tests were performed under constant temperature and stress. A flat ended cylindrical punch was used to create impressions. The temperature was varied between 398 K and 598 K while the stresses were varied from 200 MPa to 500 MPa (normalized stress: 0.014 ≤ σimp/ G ≥ 0.032). A power-law creep deformation was assumed to calculate creep exponent and activation energy using the steady state minimum impression velocity obtained from impression tests. The creep behavior was analyzed with the help of impression creep curves and plastic deformation was analyzed with the help of micrographs. It was found that creep exponent varied between 4.5 and 6 and activation energy between 73.28 and 113.35 kJ/mol were obtained. From the study it was concluded that the creep mechanism involved was pipe-diffusion-controlled dislocation climb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.