This paper presents a new approach to evaluation of registration using a general discriminative learning model that is independent of the type of registration method. We select features by association of a registration with a set of metrics (pixel based, patch based and histogram based statistics) and learn a classifier that discriminates mis-registrations from correct registrations using Adaboost. Experiments on a set of wireless capsule endoscopy (CE) images and images extracted from minimally invasive surgical endoscopic video data are presented. Results show that the proposed method outperforms any single classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.